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Abstract

Biological systems present multiple scales of complexity, ranging from molecules to entire populations. Light
microscopy is one of the least invasive techniques used to access information from various biological scales in
living cells. The combination of molecular biology and imaging provides a bottom-up tool for direct insight into
how molecular processes work on a cellular scale. However, imaging can also be used as a top-down approach to
study the behavior of a system without detailed prior knowledge about its underlying molecular mechanisms. In
this review, we highlight the recent developments on microscopy-based systems analyses and discuss the
complementary opportunities and different challenges with high-content screening and high-throughput imaging.
Furthermore, we provide a comprehensive overview of the available platforms that can be used for image analysis,
which enable community-driven efforts in the development of image-based systems biology.
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Introduction
Humans are essentially a visual species. Most of our sen-
sory neocortex is engaged in the processing of visual
inputs that we gather from our surroundings. Not sur-
prisingly, visualization techniques are at the heart of sci-
ence and engineering [1]. One of the ultimate goals of
systems biology is to elucidate relationships between
molecular system states and higher order phenotypic
traits. However, light scattering and other optical proper-
ties of living matter complicate the acquisition of in-
formative images. For many decades, chemical fixation
and the slicing of biological matter have been used to
improve the stability and optical properties of samples.
However, understanding living dynamic biological sys-
tems by examining fixed specimens is, at the best, a
heuristic process.
The main challenge of the post-genomic era is under-

standing the rules governing dynamic biological systems.
Current genomic tools in combination with advances in
microscopy and computation facilitate in vivo observa-
tions of any genetic entity of interest. Recent progress in
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biotechnology, technology, and interdisciplinary cooper-
ation provides more realistic insights into biological pro-
cesses than ever before. With regard to systems biology,
microscopy is a tool that connects multiple scales of
biological complexity, ranging from molecules to popu-
lations. Recent progress in light microscopy allows for
unprecedented insights into nanostructures, as well as
unprecedented experimental throughput. In addition,
high-resolution three-dimensional (3D) imaging of small,
whole organisms is now feasible across time [2]. In turn,
the progress in imaging technologies requires computer
vision techniques for automated image analysis.
Light microscopy opportunities in systems biology
Groundbreaking progress in technology during recent
decades has leveraged the development of high-resolution
microscopy [3-9]. In addition, improved understanding of
chemical and physical properties of genetically encoded
fluorescence markers has led to the optimization of live
cell imaging applications and limited undesired experi-
mental side effects [10]. Furthermore, the growing palette
of available fluorescent proteins [11,12] and other fluores-
cent labels [13-16] has facilitated the imaging of a broad
range of sample types, ranging from single molecules to
whole organisms. On the other hand, most microscopes
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are highly specialized devices. Therefore, the selection of
appropriate microscopes and data analysis tools requires
the consideration of biological questions and sample
properties (Figure 1). In the following sections we intro-
duce biological systems ranging from single protein
complexes to cell culture models and organisms of in-
creasing complexity and give illustrative examples of ap-
propriate light microscopy applications. In many cases,
however, the shown techniques can be used for a whole
range of sample types.

Molecular imaging
Molecular imaging is a discipline at the intersection be-
tween molecular biology and in vivo imaging. Optical
molecular imaging can be used as a powerful tool for
studying the temporal and spatial dynamics of biomole-
cules and their interactions [17], in vitro as well as in vivo.
On a purely molecular scale, imaging has for example

provided an understanding of the rotational movement
of F1-ATPase within ATP synthase [18]. The analysis of
such highly structured macromolecular complexes of sizes
and dynamics within nanometer and microsecond ranges,
respectively, requires preliminary knowledge about mo-
lecular players. To observe the rotation under a micro-
scope, Yasuda et al. [18] fixed subcomplexes of F1 on
surface-bound beads and attached a fluorescently labeled
actin filament to each γ subunit of ATP synthase. These
structures were mounted on cover glasses. The in vitro
addition of ATP finally triggered the continuous rotation
of a few percentage of fluorescent actin filaments. At the
Figure 1 Factors to be considered for the success of microscopy-base
improved the quality of raw data in image-based projects. However, optim
complete overview of available imaging technologies is beyond the scope
microscope is based on sample- and project-specific factors. The optics of
penetration depth, and a level of acceptable phototoxic stress needs to be
management, the needed throughput, which tends to be high in systems
infrastructure needs to be in place to avoid bottlenecks in image analysis a
time, these high-speed images obtained at single-molecule
resolution were recorded on an 8-mm videotape. Since
this work was published, new technologies have been
developed to obtain even higher temporal and spatial data
resolution [19]. However, sample preparations for such
studies remain to be a manual and time-intensive en-
deavor [20].
Single molecule imaging in living matter provides the

ability to study the molecular organization in cells and tis-
sues by localizing specific molecules, such as RNA and
proteins, in a native cellular context. However, many
subcellular structures have dimensions lying below the dif-
fraction limit of the visible light. Therefore superresolution
microscopy techniques, allowing to look beyond the dif-
fraction limit, such as PALM and STORM, are increas-
ingly used for analyzing the organizational principles of
molecular complexes and single molecules within living
cells [21]. A central paradigm in systems biology is the
aim for understanding biological networks including many
different molecular factors. In classical fluorescence mi-
croscopy, however, the number of channels, which can be
measured simultaneously, is limited by the spectral over-
lap between fluorophores. In this context it is important
to note that recent developments have succeeded in in-
creasing the number of molecular species that can be
measured simultaneously. For example, Lubeck et al. [22]
reported a method that drastically increases the number
of simultaneously measurable molecular species by com-
bining super-resolution microscopy and combinatorial
labeling using mRNA barcodes with adjacent emitter/
d projects: The development of highly specialized microscopes has
al results are based on the choice of adequate imaging systems. A
of this review. However, as a guideline, the choice of an adequate
the microscope need to acquire images with adequate resolution and
considered for the illumination of the sample. At the level of project
biology, needs to be considered, and an adequate image analysis
nd the interpretation of data.
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activator pairs. As a proof of concept, the authors analyzed
the mRNA levels of 32 genes within a single yeast cell.
Further improvements of this barcoding technology could
potentially be used to perform -omics experiments at
single-cell resolution, which could be a major milestone
for systems biology.
From a holistic perspective, the mechanistic under-

standing of single molecular machines does, however,
not allow for a complete understanding of higher level
systems. Instead, it is important to study multiple scales
of biological systems and identify potential signal trans-
duction chains between molecules, cells, organs, and
complex traits such as clinical syndromes. A major aim
Figure 2 Selected microscopy applications in systems biomedicine: (A
to evaluate mitotic phase transitions [33]. (A) Trellis diagram showing class
example of time-series images. (C) Double-stained HeLa cells in different ce
Automated segmentation of single worms [34]. (E) Straightening of single
expressing zones are highlighted in green. (J) Registration of single image
vivo imaging of mice. (F) Miniaturized microscope weighing 1.9 g [37]. (G)
Nanoscopy of dendritic spine dynamics in the brain of a living mouse [25].
of modern systems biology and systems biomedicine is
translational research, which develops clinical applica-
tions for improving patients’ quality of life [23]. How-
ever, before finding a clinical application, findings of
in vitro experiments need to be validated in a more
physiological context, such as molecular imaging in cell
culture, live tissue culture [24], or a living brain [25-27].

Cellular Imaging
The in vitro imaging of biophysical processes at the mo-
lecular scale requires time-intensive sample preparation,
whereas the imaging of higher-scale processes (Figure 2)
is often feasible at higher throughput, which is an
), (B), and (C) Analysis of mitotic events by hidden Markov modeling
prediction estimates for a given cell. (B) Event order map and
ll division states. (D) and (E) Nematode morphology analysis. (D)
nematode datasets [35]. (I) and (J) Body atlas for zebrafish [36]. (I) TH-
information into a zebrafish body-atlas database. (F), (G), and (H) In
Dynamic analysis of the intestinal mucosal barrier function [38]. (H)
All images were used with permission of the publishers.
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important advantage in terms of statistical power and
network analysis. Cell-based screening for biological or
chemical compounds with biological effects is at the
core of modern translational systems biology. High con-
tent screening (HCS) combines high-throughput micros-
copy with the automated extraction of a multitude of
single-cell physiological features [28]. Automated micro-
scopes equipped with an autofocus system [29,30] can
be used to perform high-throughput experiments, in
which the effects of hundreds of thousands of com-
pounds or genetic perturbations are analyzed. The clas-
sical readouts of such image-based high-throughput
screenings are fixed endpoints that can gather data from
multiple image channels. While the lack of dynamical in-
formation is a constraint of endpoint measurements,
both the possible high-throughput of endpoint measure-
ments and the possibility to use antibodies that target
intracellular antigens in fixed samples are valid argu-
ments for choosing an endpoint analysis strategy [28]. In
contrast to many biochemical assays, the resulting im-
ages of cell populations circumvent the limitations of
population averages [31] by analyzing image data at the
single-cell level [32]. However, the large volume of images
produced by such high-throughput screening requires au-
tomated image analysis, including the identification and
isolation of regions or objects of interest (segmentation)
as well as the extraction of numerical intensity and
morphology features.
In addition to single-cell information, light microscopy

provides a path from rough static models to more re-
fined dynamic models. Low- and medium-throughput
automated microscopy can be used to acquire sequential
image series of multiple samples and analyze the resulting
kinetic data. The greatest strength of live cell imaging is
its potential to assess the dynamics of cellular and even
subcellular events. One example is a study by Chao et al.
[39], in which the local translation of specific mRNAs was
analyzed in single cells. With regard to cell populations,
live cell imaging enables assessment of cellular heterogen-
eity and synchrony, which are important for understand-
ing cellular differentiation [40-42], as well as local and
global control mechanisms of transcription factors such as
NF-kappaB [43,44].
Modern live cell imaging can build upon a whole arsenal

of fluorescence-based methods that can be used to quan-
tify the subcellular distribution of proteins, dynamics of
subcellular shuttling processes, and molecular binding
rates [4]. Using a highly tuned setup such as Förster res-
onance energy transfer (FRET) and fluorescence lifetime
imaging microscopy, the dynamics of fast spatiotemporal
protein-protein interactions can be observed at a molecu-
lar resolution [45]. However, the adequate interpretation
of spatially resolved dynamic information requires more
advanced analysis than steady-state images. In addition to
segmentation, live cell imaging applications often require
object tracking. Dynamic information can be highly rele-
vant for translational research. For example, determining
a correlation between hydrogel substrate elasticity and the
migration of muscle stem cells could lead to the develop-
ment of cell-based therapies for muscle-wasting diseases
[46]. Classical tracking algorithms segment and track cells
in a sequential approach by connecting neighboring time
points. However, in contrast to classical tracking and cell
lineage identification algorithms, improved algorithms
that consider the entire image sequence, and prior know-
ledge (e.g., about mitosis and apoptosis) for annotating the
best track and identifying the most likely cell lineage can
be achieved [47].
The possibility of simultaneous measurement of a

multitude of cellular properties or features gives HCS
tremendous power and challenging complexity. Typical
applications include screening for potential leads, mole-
cules that are potential drug candidates, and genetic
screening. Both approaches detect changes in cellular
morphology resulting from molecular factors. While
multiscale analysis in systems biology aims to connect
molecular factors and phenotypic outcomes, HCS can be
used for both top-down and bottom-up approaches [23].
Using HCS it is possible to analyze the effects of
untested molecular factors on well-defined phenotypic
outcomes or to classify multifactorial phenotypic traits for
predicting underlying network states and pathways. Using
HCS to predict potential pathways or the molecular tar-
gets of compounds identified in phenotypic screens is a
hypothesis-generating approach that can provide new
perspectives for understanding complex diseases with un-
discovered pathogenic processes. In contrast, using HCS
to validate potential drug targets is a more classical,
hypothesis-driven approach, which requires more specific
prior knowledge about phenotypic traits. One common
example is RNA interference screening, which often fo-
cuses on a precisely defined phenotype [29].
The most advanced form of HCS combines bottom-up

and top-down approaches. For example, HCS can com-
bine genome-wide screening with a holistic view on a
broad range of phenotypic features. A genome-wide
RNA interference screen with highly advanced computa-
tional image processing performed by Neumann and
Walter et al., used large-scale multifactorial phenotypic
profiling from 2-day live cell imaging to successfully
identify hundreds of human genes involved in diverse
biological functions, including cell division, migration,
and survival [48,49]. Importantly, this study also demon-
strated the value of single-cell event-order analysis for
investigations that aim to understand correlation and
causality on a cellular scale.
The imaging of rare events such as cell division remains

to be a challenging endeavor. One way to circumvent the
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manual selection of rare events is to use machine learn-
ing approaches to identify cellular events of interest. To
fill this gap, Conrad et al. [50] developed Micropilot, a
software that automates the identification of cell states
and decision making for targeted image acquisition.
Pre-filtering at the image acquisition level can lead to a
loss of valuable information; hence, the applicability of
pre-filtering depends on the type of pre-filtering and
biological questions asked. For example, pre-filtering
removes information from prior time points but allows
for increased throughput of downstream event-order
analysis at selected regions of interest.

Yeast
One primary goal of systems biology is to achieve a sys-
tems level of understanding of cellular genetics and
physiology. The budding yeast, a simple and genetically
tractable eukaryotic system, is a premier model organism
for such functional genomic study [51]. Classical gen-
omic screens in yeast have focused on specific morpho-
logical features such as cell size, cell shape, or bud site
pattern [52,53]. In addition, the short lifespan of this
model organism presents an interesting feature for re-
search on aging. However, yeast cells in liquid culture
are suspension cells. Budding results in an exponential
increase in the number of daughter cells. The classical
analysis of aging in short-lived budding yeast by taking
snapshots of a single yeast cell throughout its entire life-
span [54,55] involves laborious manual dissections of
daughter cells from larger mother cells. Recently, Lee
et al. [56] described a microfluidics-based solution, in
which cells were immobilized throughout their lifespan
without accumulating daughter cells. As a result, the
combination of microfluidics with microscopy drastically
improved the workflow for image-based analysis of
aging. Microscope-based cytometry is also a powerful
tool with freely available software that quantifies fluores-
cence intensities in cellular resolution time series [57].
Similar to mammalian cell culture, yeast projects need

to maximize the multiplicity of phenotypic readouts.
The ready to use solution for multiparametric morpho-
logical analysis of yeast cells, CalMorph, is an image pro-
cessing program that quantifies 501 cell morphology
parameters in triple-stained yeast cells [58-60]. The auto-
mated phenotyping of subcellular events has successfully
been used to identify drug targets based on morphological
phenotypes of a reference mutant panel [61].

Caenorhabditis elegans
A pure cell culture-based analysis of gene regulatory net-
works is not sufficient for understanding signal trans-
duction pathways, which can involve multiple regulatory
mechanisms at different scales of biological complexity.
Compared to yeast, the worm Caenorhabditis elegans
has the advantage of being a multicellular animal model
with higher genetic homology to humans. Furthermore,
drug discovery screens with whole animals have the
advantage of identifying compounds that modulate sys-
temic phenotypes. Animal screens also have the poten-
tial to eliminate compounds with systemic toxicity
earlier in the discovery process. The ability to conduct
forward and reverse genetic screens in animal models
such as C. elegans remains to be one of the most power-
ful experimental paradigms for understanding molecular
pathways underlying human disease phenotypes [62].
The potential to analyze large numbers of isogenic ani-
mals through high-throughput and HCS for accessing
different aspects of human disease phenotypes will
certainly ensure an important role for this model organ-
ism in future oriented translational research [62-67].
With regard to imaging, its small size of only approxi-
mately 1 mm for adults and transparency at all stages of
development are advantageous features. Finally, the
possibility of flow sorting of worms by both size and
fluorescence enables high-throughput experiments to
be conducted [68].
One example of advanced image analysis in C. elegans

is behavioral motility analysis. C. elegans can move
through a wide range of environments, including crawling
on substrates, swimming in fluids, and locomotion
through microfluidic substrates. For classical locomotion
analysis, each environment requires customized state-of-
the-art image processing tools that rely on heuristic param-
eter tuning [69-80]. Sznitman et al. [81] recently proposed a
so-called multi-environment model estimation framework
that is versatile within various environments. In this image
analysis process, statistical models for the background envir-
onment and nematode appearance are explicitly learned
from a single image, which includes a nematode in its
environment, and are used to accurately segment target
nematodes.
Locomotive movements and complex morphological

structures of the worms are of interest for multiscale
approaches in systems biology, which aim to connect
molecular events and organic states. Complete organ-
isms such as C. elegans have more morphological fea-
tures than simple cellular models. Green et al. [82]
showed that steady-state phenotypic profiles of complex
tissues such as gonads were sufficient for reconstructing
a high-resolution genetic network of C. elegans. How-
ever, the relatively complex morphology presents a chal-
lenge for the comparative analysis of different worms.
Image registration is a classical tool for resolving such
problems. Recent developments in image processing
can straighten C. elegans images, create an annotated
3D body atlas of the worm [35,83], and perform high-
throughput morphological phenotyping of individual
worms [34].
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Advances in Bessel-beam technology and structured
illumination microscopy promise even deeper insights,
beyond the diffraction limit, into complex biological
phenomena that require extended high-resolution time
series in a multicellular context [7,84].

Zebrafish
In contrast to C. elegans, the zebrafish, also known as
Danio rerio, belongs to the class of vertebrates, which is
an advantage in the context of translational research.
The zebrafish system with its small transparent larva can
be used in diverse screening assays, including the ana-
lysis of development and organ function in living ani-
mals. In addition, genetic and chemical perturbation
methods are well established [85,86]. Zebrafish can be
used in small molecule screening, genetic screens, drug
discovery, drug lead identification, and target identifica-
tion [87,88]. However, the throughput of such screens
decreases with the age and size of the fish. The main
strength of this model lies in developmental biology ap-
plications [89] rather than applications related to aging.
In the context of imaging the central nervous system,

high-resolution images of brain cells need to be ac-
quired. Hence, blindly chosen fixed-field-views that lead
to the potential omission of features of interest or low-
resolution data of whole objects lacking cellular detail
cannot fulfill this need. Stitching is an alternative of ac-
quiring multiple fields of view at a high resolution for
subsequent reassembling that can significantly increase
imaging times and produce excessive and redundant
data volumes. The problem of untargeted image acquisi-
tion patterns is a widespread issue that generally limits
the efficiency of HCS assays. However, custom algorithms
can solve this problem by automatically identifying prede-
fined regions such as the fish brain, and triggering
targeted high-resolution captures [90]. However, for
interpreting brain phenotypes, the data from single fish
need to be mapped to a standard brain map to facilitate
the statistical evaluation of replicate zebrafish brains. This
registration problem can be solved with the Virtual Brain
Explorer (ViBE-Z), which is a software tool that maps
cellular gene expression data to a 3D standard larval
zebrafish by using a fluorescent stain of cell nuclei for
image registration [36].

Mouse
Compared to previously described animal models, mouse
models only enable moderate experimental throughput.
Due to the optical properties of mice, immunohistochem-
istry remains a gold standard method in this field. One
common strategy for increasing the experimental through-
put is the use of tissue arrays [91]. Notably, modern image
analysis tools can assist in the evaluation of the resulting
colored tissue images [92,93].
Recently, evolved imaging techniques and image ana-
lysis tools have enabled non-invasive experimental
workflows providing statistically relevant amounts of
data. Near-infrared fluorescent optical imaging agents,
which maximize the depth of tissue penetration, can be
used for non-invasive whole mouse imaging, thus enab-
ling the analysis of the presence and evolution of in-
ternal markers for disease progression [38,94]. Recent
progress in image analysis has also been useful in the
behavioral studies of mice; video tracking can be used to
analyze the explorative behavior of mice [95]. For ex-
ample, MiceProfiler is an open-source software that
tracks and models the behavior of untagged mice [96].
The in vivo observation of live neurons is a useful ap-

proach because these cells perform their basic function
of information processing by connecting with their
neighbors. One way of monitoring the cellular dynamics
of living neurons in mouse tissue is to use hippocampal
slices of 5- to 7-day-old mice [97,98]. However, observing
cellular dynamics in living mice is a more challenging en-
deavor. Berning et al. [25] used custom stimulated emis-
sion depletion microscopy to observe neurons and the
movement of dendritic spines in the cerebral cortex of a
living mouse [25]. This method was very invasive as op-
tical access was provided by a glass-sealed hole in the skull
of the anaesthetized and immobilized mouse. However, in-
travital microscopy is relevant for translational research,
and significant technological progress has been made in
recent years [99-101]. Two major limitations of classical
intravital microscopy are the limited optical penetration
depth and immobilization of mice; however, these limita-
tions can be overcome by using miniaturized implantable
microscopes [37,102-108].

The challenge of quantitative image analysis
A central goal of image analysis is the conversion of
microscopic images into biologically meaningful quanti-
tative data. However, the amounts of image data pro-
duced using modern systems biology are very vast for
manual analysis; hence, the development of automated
image analysis tools is essential. Due to the complexity
and size of modern imaging data, the computational
analysis of biological imaging data has already become a
vital emerging sub-discipline of bioinformatics and com-
puter vision [109]. Research using multiparametric im-
aging data relies heavily on computational approaches
for image acquisition, data management, visualization,
and correct data interpretation [110-112]. The typical
functions of dedicated computer vision systems are data
pre-processing, image segmentation, feature extraction,
and decision making [113,114]. Over the past 20 years, a
myriad of commercial (Table 1) and open-source (Table 2)
image analysis and data management tools have evolved
[112,114]. In this review, we focus on open-source



Table 1 Commercial software tools for image acquisition, processing, and analysis

Product name Supplier 3D
rendering

Movie
generation

Deconvolution Multi-core Editing Tracking of
objects

Segmentation Large datasets High-throughput Mesh generation

Able Image Analyser Mu Labs No No No No Yes No Yes No No No

Acapella PerkinElmer No Yes No Yes Yes No Yes Yes Yes No

AcuityXpress Molecular Devices No No No No No No Yes Yes Yes No

Amira Vsg Yes Yes Yes Yes Yes Yes Yes Yes No Yes

Aphelion Dev ADCIS No Yes No No Yes Yes Yes No No No

AutoQuant MediaCybernetics Yes Yes Yes Yes Yes Yes No No No No

AxioVision for Biology Zeiss Yes Yes Yes No Yes Yes Yes No No No

Clemex Vision PE CLEMEX Yes No No No Yes No Yes No No No

Columbus PerkinElmer No No No Yes No No Yes Yes Yes No

Developer XD Definiens Yes Yes No Yes Yes Yes Yes No Yes No

Digimizer MedCalc Software No No No No Yes No Yes No No No

eCELLence Glance No No No No No No Yes No No No

GSA Image Analyser GSA No No No No Yes No Yes No No No

Huygens Software SVI Yes Yes Yes Yes Yes Yes Yes Yes Yes No

Image-Pro Premier MediaCybernetics Yes Yes No No Yes Yes Yes No No No

imageWarp A&B Software No Yes No Yes Yes Yes Yes No No No

Imago MayaChitra No Yes No No No No Yes Yes No No

Imaris Bitplane Yes Yes No Yes Yes Yes Yes Yes No No

IN Cell Investigator GE Healthcare No Yes No No Yes Yes Yes No No No

IN Cell Miner HCM GE Healthcare No No No No No No Yes Yes Yes No

iSolution DT i-Solution Yes Yes No No Yes Yes Yes No No No

LAS Image Analysis Leica No Yes No No Yes No Yes No No No

MetaMorph Molecular Devices Yes Yes Yes Yes Yes Yes Yes No No No

Pax-it! MIS No Yes No No Yes No Yes No No No

SlideBook 3i Yes Yes No No Yes Yes Yes No No No

softWoRx Suite Applied Precision Yes Yes Yes Yes Yes Yes Yes No No No

Stream Olympus Yes Yes No No Yes No Yes No No No

Volocity 3D PerkinElmer Yes Yes Yes Yes Yes Yes Yes Yes No No

ZEN 2011 Zeiss Yes No Yes No No No No No No No
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Table 1 Commercial software tools for image acquisition, processing, and analysis (Continued)

Product name MacOS
X

Linux/
Unix

Windows
32 bits

Windows
64 bits

Data
management

Web-based
access

Extendable Main
purpose

Link

Able Image
Analyser

No No Yes Yes No No No Analysis http://able.mulabs.com/index.html

Acapella No Yes Yes Yes No No Yes Analysis http://www.perkinelmer.com/pages/020/cellularimaging/products/
acapella.xhtml

AcuityXpress No No Yes Yes Yes No No Storage/
Analysis

http://www.moleculardevices.com/Products/Software/
High-Content-Analysis/AcuityXpress.html

Amira Yes Yes Yes Yes No No Yes Analysis http://www.vsg3d.com/amira/overview

Aphelion Dev No No Yes Yes No No Yes Analysis http://www.adcis.net/en/Products/Aphelion-Dev-4.x/Overview.html

AutoQuant No No Yes Yes No No No Processing http://www.mediacy.com/index.aspx?page=AutoQuant

AxioVision for
Biology

No No No No Yes No No Acquisition/
Analysis

http://microscopy.zeiss.com/microscopy/en_de/products/
microscope-software/axiovision-for-biology.html

Clemex Vision PE No No Yes Yes No No Yes Acquisition http://www.clemex.com/en/Products/Multipurpose-Image-Analysis/
Clemex-Vision-PE/Description

Columbus Yes Yes Yes Yes Yes Yes No Storage/
Analysis

http://www.perkinelmer.com/pages/020/cellularimaging/products/
columbus.xhtml

Developer XD No No Yes Yes No No No Analysis http://developer.definiens.com/overview.html

Digimizer No No Yes Yes No No No Analysis http://www.digimizer.com/

eCELLence No No Yes No No No No Cell Counting http://www.gvt.it/ecellence

GSA Image
Analyser

No No Yes Yes No No No Analysis http://image.analyser.gsa-online.de/

Huygens
Software

Yes Yes Yes Yes No No Yes Processing http://www.svi.nl/HuygensSoftware

Image-Pro
Premier

No No Yes Yes No No No Analysis http://www.mediacy.com/index.aspx?page=IP_Premier

imageWarp No No Yes Yes No No Yes Analysis http://www.imagewarp.com/index.html

Imago No No Yes Yes Yes No No Analysis http://mayachitra.com/imago/index.html

Imaris Yes No Yes Yes No No Yes Analysis http://www.bitplane.com

IN Cell
Investigator

No No Yes Yes No No Yes Analysis http://www.biacore.com/high-content-analysis/product-range/
Overview/IN_Cell_Investigator/product_information/index.html

IN Cell Miner
HCM

No No Yes Yes Yes No No Storage http://www.biacore.com/high-content-analysis/product-range/
Overview/IN_Cell_Investigator/data_management/index.html

iSolution DT No No Yes Yes No No No Analysis http://www.imt-digital.com/english/html/productsIMT.php

LAS Image
Analysis

No No Yes Yes No No No 2D Analysis http://www.leica-microsystems.com/products/microscope-imaging-software/
life-sciences/las-easy-and-efficient/details/product/leica-las-image-analysis/

MetaMorph No No Yes Yes No No Yes Acquisition/
Analysis

http://www.moleculardevices.com/products/software/meta-imaging-series/
metamorph.html
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Table 1 Commercial software tools for image acquisition, processing, and analysis (Continued)

Pax-it! No No Yes Yes Yes No No Storage/
Analysis

http://www.paxit.com/paxit.asp

SlideBook No No Yes Yes No No No Analysis https://www.slidebook.com/

softWoRx Suite No No Yes Yes Yes No No Visualization http://www.api.com/softworx-suite.asp

Stream No No Yes Yes Yes No No Storage/
Analysis

http://www.olympus-ims.com/en/microscope/stream/

Volocity 3D Yes No Yes Yes No No No Analysis http://www.perkinelmer.com/pages/020/cellularimaging/products/
volocity.xhtml

ZEN 2011 No No Yes Yes No No Yes Acquisition/
Analysis

http://microscopy.zeiss.com/microscopy/en_de/products/microscope-
software/zen-2011.html
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Table 2 Open-source software tools for image processing and analysis

Software Class Extendibility & Dimensionality Description References Link

Java Matlab C++ Perl Python R 2D 3D nD

1C1V-Nauru Analysis Yes No No Yes Yes Yes Yes Yes Yes Two-dimensional visualization of image-based
screening data sets from high content screening

[115] http://knime.org/

4D Viewer Analysis Yes No No No No No No Yes No Plugin for ImageJ to visualize three-dimensional
image stacks

[116] http://3dviewer.neurofly.de/

ACME Analysis No No Yes No No No No Yes No Membrane-based cell segmentation and
morphology analysis that has been used for
embryogenesis time-lapse datasets

[117] https://github.com/krm15/ACME

Advanced Cell
Classifier

Analysis No Yes No No No No Yes No No Data analyzer program usingmachine learning
methods to evaluate cell-based high-content screens

[118] http://acc.ethz.ch/

Bisque Processing No No No No Yes No Yes Yes Yes Bisque (Bio-Image Semantic Query User
Environment) was developed for the exchange and
exploration of biological images and is widely used
in plant biology

[119,120] http://www.image.ucsb.edu/bisque

Bio-Formats Processing Yes Yes Yes No Yes No Yes Yes Yes Standalone Java library for reading and writing life
sciences image file formats

[121] http://www.openmicroscopy.org/

BioImageXD Analysis No No Yes No Yes No Yes Yes No Software for analyzing image-based high-
throughput screening data

[122] http://www.imagexd.net/

CellClassifier Analysis No Yes No No No No Yes No No Matlab package of machine learning tools for the
classification of cells or other biological objects

[123] www.cellclassifier.ethz.ch

CellCognition Analysis No No Yes No Yes No Yes No No Machine learning tool for time-resolved phenotype
annotation that uses automatically extracted class
transition probabilities to correct classification errors
without user supervision

[33] http://www.cellcognition.org/

CellExplorer Analysis No Yes No No No No No Yes No Matlab code for a 3D digital atlas [35] http://penglab.janelia.org/proj/cellexplorer/

CellHTS
Bioconductor

Analysis No No No No No Yes Yes Yes Yes Library for R-based analysis of cell based screens,
visualization of screening data, statistical analysis,
and connecting to other bioinformatics resources

[124] http://www.bioconductor.org/

CellProfiler Analysis No Yes No No Yes No Yes No No Image analysis platform designed for biologists
without training in computer vision or
programming for automated quantitative
measurement of phenotypes from thousands of
images

[125,126] http://www.cellprofiler.org/

CellProfiler
Analyst

Analysis No No No No Yes No Yes Yes No High-level data analysis platform that supports the
CellProfiler framework. CellProfiler Analyst includes
tools for classification, interactive data browsing,
data mining, and visualization

[127,128] http://www.cellprofiler.org/

EBImage Analysis No No No No No Yes Yes Yes No Library of image analysis tools for the statistical
programming environment R

[129] http://www.bioconductor.org/packages/
release/bioc/html/EBImage.html

FarSight Analysis No No No No Yes No Yes Yes Yes Toolkit for Python-basedmultidimensional image
analysis

[130] http://farsight-toolkit.org
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Table 2 Open-source software tools for image processing and analysis (Continued)

Fiji Analysis Yes No No No No No Yes Yes Yes Software-engineering friendly ImageJ distribution
with automated plugin management and the
library ImgLib for type-, dimension-, and storage-
independent representation of image data

[131 http://fiji.sc/

iCluster Analysis No No No No No No Yes Yes No Statistical tool that represents screening images in a
spatial similarity layout

[132 ] http://icluster.imb.uq.edu.au/

Icy Analysis Yes No No No No No Yes Yes No Modern user and developer friendly open image
informatics platform aiming to support extended
reproducible research

[134 ] http://icy.imageanalysis.org

Ilastik Analysis No No No No Yes No Yes Yes No Pattern recognition-based image segmentation [93,1 http://www.ilastik.org/

ImageJ Analysis Yes No No No No No Yes Yes No Java-based extendable package of microscope
image analysis tools

[137 9] http://rsbweb.nih.gov/ij/

ImageJ2 Analysis Yes No No No No No Yes Yes Yes Next generation of ImageJ [112 http://developer.imagej.net/

ImgLib2 Analysis Yes No No No No No Yes Yes Yes Java library for n-dimensional data representation
and manipulation with a focus on image
processing

[140 http://imglib2.net

ITK Analysis No No Yes No No No Yes Yes Yes The insight segmentation and registration toolkit
(ITK) is a library, initially based on C++, that
performs registration and segmentation

[141 http://www.itk.org/

KNIME Analysis Yes Yes Yes Yes Yes Yes Yes Yes Yes The Konstanz Information Miner (KNIME) is a
workflow tool for the visual assembly and
interactive execution of a data pipeline

[142 http://www.knime.org/

mRMR Analysis No Yes Yes No No No Yes Yes Yes Feature classifier for minimum redundancy
maximum relevance feature selection

[143 http://penglab.janelia.org/proj/mRMR/

OME Processing Yes Yes Yes No Yes No Yes Yes Yes The Open Microscopy Environment (OME) provides
file formats and metadata standards for microscope
images

[144 ] http://www.openmicroscopy.org/

OMERO Processing Yes Yes Yes No Yes No Yes Yes Yes Visualization, multi user management, and analysis
of biological microscopy images

[146 ] http://www.openmicroscopy.org/

OMERO.
searcher

Processing No No No No No No Yes No No Tool for content-based image retrieval [148 http://murphylab.web.cmu.edu/software/
searcher/

OpenBis Processing Yes No No No No No Yes Yes Yes Management system for biological information. The
main goal is to support biological research data
workflows from the source (i.e., the measurement of
instruments and facilitating the process of
answering biological questions using cross-domain
queries against raw data, processed data,
knowledge resources, and metadata)

[149 http://www.cisd.ethz.ch/software/openBIS

OpenCV Analysis Yes No Yes No Yes No Yes No No Library for feature extraction, tracking, and
visualization in 2D plus time

[150 http://opencv.org/

PatternUnmixer Analysis No Yes No No No No Yes No No Machine learning tool used to determine the
distribution of probes between different subcellular
compartments

[151 ] http://murphylab.web.cmu.edu/software/
PatternUnmixer2.0/
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Table 2 Open-source software tools for image processing and analysis (Continued)

PhenoRipper Analysis No Yes No No No No Yes No No Image block-based tool for the rapid exploration of
high content microscopy images

[153] http://www.phenoripper.org/

Vaa3D Analysis No No Yes No No No Yes Yes Yes Extendible platform for 3D visualization-assisted
image analysis

[154] http://www.vaa3d.org/

VANO Analysis No No Yes No No No Yes Yes No Object annotation system for 3D multicolor image
stacks

[155] http://vano.cellexplorer.org/

VisBio Analysis Yes No No No No No Yes Yes Yes Visualization and analysis of multidimensional
image data

[156] http://loci.wisc.edu/software/visbio

VTK Analysis No No Yes No No No Yes Yes No The visualization toolkit (VTK) is a library of C++
code for 3D computer graphics, image processing,
and visualization

[157] http://www.vtk.org/

Voxx Analysis No No Yes No No No Yes Yes No Tool for fast, GPU-based 3D rendering [158] http://www.indiana.edu/~voxx/index.html

WND-CHARM Analysis No No Yes No Yes No Yes Yes Yes Command line program for image-based feature
extraction

[159] http://code.google.com/p/wnd-charm/
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solutions, which facilitate community-driven efforts in the
development of image analysis.
Examples of microscopy developments requiring cus-

tom computational workflows for image acquisition in-
clude structured-illumination microscopy [160], super
resolution microscopy [161-163], and Bessel-beam mi-
croscopy [5]. Some modern microscopes can produce up
to 30 TiB of data per day [164]. However, the volume of
images generated in systems biology is growing rapidly.
As a result, the scalability of storage solutions and
awareness for the need of image repositories and com-
mon file formats for imaging projects are increasing.
Research on image analysis has developed an entire eco-

system of image analysis tools. ImageJ [137-139], formerly
known as NIH image, is a role model in the landscape of
open-source tools for image analysis. Since its beginnings
it has always been free and it became the most popular
and widespread multipurpose image analysis tool. ImageJ
has become successful because the scientific community
can freely use it to focus on image analysis rather than on
application programming. The concept of software exten-
sibility by adding plugins is also useful for developers and
end users. Furthermore, this concept has been adopted by
more recently evolved platforms such as Fiji [131] and Icy
[134,135]. The success story of ImageJ is continuing as the
next-generation ImageJ2 software is currently under de-
velopment (Table 2).
The 2 main challenges in image analysis in systems

biology are the analysis of complex high-level structures
such as whole organisms and the rise of experiments
with ever increasing throughput. Imagery of large-scale
biological systems such as embryos and brains requires
state of the art algorithms for stitching, registration, and
mapping to anatomical atlases. In addition to the extensible
Vaa3D [154] and Fiji software packages, which are both
established in this field, new tools such as TeraStitcher that
can handle TiB-scale datasets have now emerged [165].
While the imaging of such high-level structures is typically
conducted in a rather low throughput, partially automated
workflows requiring a significant amount of user input are
still quite common. In contrast, the amounts of images pro-
duced in high-throughput experiments are often increased
by several orders of magnitude and cannot be manually an-
alyzed. The challenge is to analyze data from HCS sets to a
meaningful extent and in a reasonable amount of time.
Several open-source packages for image analysis include
functionality for machine learning-based cell classifica-
tion. Some of these packages are CellProfiler [125,127],
CellClassifier [123], and the R package EBImage [129],
which provide workflows for fixed cell images.
CellProfiler can be used to address several application

areas, including intensity and morphology measure-
ments. In contrast to tools designed for fixed objects,
CellProfiler can perform two-dimensional (2D) object
tracking. Information about temporal coupling between
cellular events is highly relevant for understanding the
physiology of biological systems. Time-lapse imaging has
emerged as a powerful tool for investigating dynamic
cellular processes such as cell division or intracellular
trafficking of labeled targets of interest. However, for the
analysis of such high-throughput cinematography, only a
few tools are currently available. CellCognition [33] is a
freely available software platform that includes high-
throughput batch processing and annotation of complex
cellular dynamics such as the progression of single cells
through distinct cell division states. In this platform, tem-
poral hidden Markov modeling is used to reduce classifica-
tion noise at state transitions and to distinguish different
states with similar morphology. Briefly, CellCognition pro-
vides an analysis platform for live imaging-based screening
with assays that directly score cellular dynamics [33].
BioImageXD [122], which is written in Python and C++, is
leveraging the libraries VTK [157] and ITK [141]. As a re-
sult, BioImageXD, unlike CellProfiler and CellCognition,
can offer options for 2D and 3D analyses by providing ad-
vanced batch-processing functions for multidimensional
fluorescence image sets, including time series. In addition
to built-in tools for visualization, colocalization analysis,
segmentation, and tracking, the graphical user interface of
BioImageXD facilitates the assembly of custom image ana-
lysis pipelines. The open-source design of the project, as
well as the use of Python and gold standard file formats
such as OME-TIFF, should further facilitate the evolution
of this project for the community working on spatio-
temporally resolved data [122].
An open-source software can foster productive collab-

orations between programming biologists and computer
scientists interested in biology. However, an important
challenge is to ensure the availability of analysis tools to
the entire community of microscope users. The timely
public availability of professionally programmed, easy-
to-use, open-source tools for image analysis will depend
on career opportunities for talented image analysis code
writers [166], and the quality of these emerging tools
will depend on good programming practices. Recently,
Carpenter et al. [167] described usability criteria for image
analysis software and advocated for usability as a more
highly valued goal in broad-impact image analysis re-
search. The authors emphasized that image analysis soft-
ware should be user-friendly, modular, developer friendly,
validated, and interoperable. Typically, the development of
usable open-source software requires close collaborations
between users and programmers, such that the resulting
software does not suffer from the lack of software engin-
eering expertise or real world applicability. An outstanding
example of an open-source image informatics platform
with very good usability is the most recently developed
generalist image analysis platform Icy [134,135]. The main
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aim of this platform is to be developer friendly and facili-
tate timely and efficient collaborations as well as reprodu-
cible research. The software is built on Java but can also
be used with the originally C++−based VTK and ITK li-
braries for native 3D visualization. The modern and well-
organized user interface provides access to state-of-the-art
image analysis tools and μManager-based [168] micro-
scope control for live acquisitions with feedback. Further-
more, the writing of complete protocols is facilitated by a
so-called workflow design tool, which represents individ-
ual processes as graphical blocks, and does not require
any Java programming knowledge [135].
The creativity of researchers asking unprecedented

scientific questions will continue to present challenges
in image analysis that cannot be solved with a single
software tool. Due to the common use of a variety of dif-
ferent software tools to acquire and analyze data, the
connectivity and interoperability between these tools are
crucial. Fortunately, many developers already understand
this, and the most successful open-source image analysis
platforms are explicitly developing ways to share data
and code [112]. Finally, image analysis, with extraction of
desired features, is needed but will not be sufficient for
making biologically relevant conclusions. The extracted
image-based features need to undergo further high-level
data analysis. In turn, the analysis of extracted features
and identification of relevant features can greatly improve
with machine learning.

Machine learning
The increasing information content in image-based re-
search poses new challenges for data interpretation.
Multiparametric phenotype descriptors defined by a
whole set of features, also known as phenoprints [29],
can be used to cluster information contained in single
pixels, single images, or whole screening datasets. How-
ever, machine learning-based classification can be used
for image segmentation and high-level analysis of image-
derived features [169].
Ilastik is an open-source tool based on user defined

examples that train a machine-learning algorithm for
identifying pixels of an image that belong to a class of
interest [93,136]. This highly advanced segmentation ap-
proach is especially useful for images in which classical
model-based segmentation gives poor results.
Machine learning can help classify image-based fea-

tures obtained on image processing into biologically
meaningful patterns. The following 3 general categories
of tasks can be performed using image features: statis-
tical comparisons, supervised learning, and unsupervised
learning. In supervised learning, the user inputs prior
knowledge by giving information, such as an annotation
of an experimental condition, or indicating the concentra-
tion of a compound. In these cases, supervised machine
learning can determine the most informative features for
distinguishing the annotated biological patterns. Some ex-
amples are dose–response curves [170] and time points in
time series [171].
CellCognition [33] was developed in the context of a

genome wide screen for mitotic modulators. This tool
utilizes a combination of explicitly coded image segmen-
tation and supervised machine learning to automate the
identification and annotation of mitotic stages. Consider-
ing the annotation of mitotic states in single cells, super-
vised learning means that the annotation of mitotic
states must be performed manually for a small set of
cells. This annotated training set is given to the learning
algorithm to find a way of performing annotations on
the remaining cells. For every cell in the training set and
main dataset, the algorithm is given a set of input vari-
ables using which it labels the mitotic states. Formally,
the learning stage consists of finding a mathematical
function that maps input variables to the correct deci-
sion. Some readily available classifiers, including the sup-
port vector machine in its basic form, use linear decision
functions. In CellCognition, however, support vector
machines with a non-linear radial kernel are used. The
main challenge in the setup of working classification al-
gorithms is to define adequate features as input vari-
ables. Considering the type of attributes humans can use
to perform the classification task may be helpful. Shape
is an important attribute for classifying mitotic states
(Figure 2B). However, shape cannot be readily quanti-
fied. Instead, CellCognition utilizes a set of quantitative
features such as roundness for the classification process.
The example of CellCognition illustrates that supervised
machine learning can leverage the human interpretation
of complex traits like shape and mathematical abstraction
of such complex traits, which is needed for automated
classification workflows in high-throughput projects.
In contrast to supervised machine learning, unsuper-

vised learning such as cluster analysis can be used inde-
pendently of prior knowledge to find groups within data.
One example of unsupervised learning is the clustering
of drugs by their effects [172]. Combinations of super-
vised and unsupervised learning are typically known as
semi-supervised learning. A classical approach is to start
with supervised learning to determine if the given fea-
tures can be used to distinguish some major classes be-
fore using unsupervised learning to discover unknown
subclasses of biological relevance [112].

Workflow systems
Workflow systems are recently beginning to emerge in
image-based systems biology and give users more flexi-
bility. These tools call applications such as image ana-
lysis tools and machine learning tools as components of
an analysis pipeline. Workflow systems can be used to
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build virtual systems for image acquisition and can per-
form feature extraction and high-level data analysis with-
out writing complex scripts. With the increasing need in
sophisticated processing, image analysis, and high-level
data interpretation, open-source workflow systems are
gaining popularity. KNIME [142] is an open-source work-
flow system with a very broad set of domains that connects
image analysis tools and other bioinformatics tools to cre-
ate complex image processing and analysis workflows.
Some of the open-source image analysis tools can also

be combined without using a workflow system. For ex-
ample, CellProfiler, with its empowering integrative abil-
ity, can run an ImageJ macro or Ilastic machine-learning
algorithm within the context of an automated image
analysis pipeline. In the context of image-based systems
biology, the main advantage of KNIME is that it can
construct workflows beyond the direct interoperability
of available image analysis tools. For example, KNIME
can integrate the library ImgLib for n-dimensional image
analysis from Fiji [131] into a workflow which was as yet
missing this functionality.

Databases
The vast amounts of experiments, images, metadata,
and extractable features in systems biology require rela-
tional databases. In HCS, there is an intrinsic need for
user-friendly, scalable, and powerful information man-
agement systems. Data management platforms should
enable users to collect, integrate, share, and publish
data. In the scope of interoperability, these platforms
should also be able to connect to data processing pipe-
lines and workflow systems. The benefit of using open
source databases is extendibility and the possibility of
platform customization.
The Bio-Image Semantic Query User Environment

(Bisque) [119] was developed for the exchange and ex-
ploration of biological images. The Bisque system sup-
ports several areas from image capture to image analysis
and query. This platform is centered on a database of
images and metadata. The integrated analysis tools allow
high-level semantic queries to be made as well as
comparisons of image content. Bisque was specifically
designed to provide researchers with organizational and
quantitative analysis tools for time-resolved multichan-
nel 3D screening data. Images and metadata are orga-
nized with tags (i.e., name–value pairs) associated with
an image. Typically, users locate images of interest by
browsing through collections or searching with specific
queries. The system has an integrated web image
browser for the filtering, sorting, and ordering of images.
The image organizer performs advanced sorting by hier-
archical tag ordering. In addition, users can extend
Bisque with data model and analysis extensions in order
to adapt the system to local needs. The extensibility of
Bisque stems from the following 2 core concepts: flexible
metadata facility and an open web-based architecture.
The Open Microscopy Environment (OME) project

[121,144,145] leverages imaging projects by focusing on
the underlying need for common file formats. OME pro-
vides Bio-Formats, a tool that fully parses more than 120
proprietary image formats and converts proprietary
metadata to the OME-XML data model. The OME-TIFF
format is a container format for Tiff images with OME-
XML metadata and the most widely used image format
in community-driven projects. To ensure data integrity,
Bio-Formats converts the proprietary file format meta-
data into a table of key-value pairs that is subsequently
stored as an annotation on the imported image in the re-
lational database OMERO [146]. OMERO was created
to provide a single unified data management platform
for image data generators and users. Briefly, OMERO
uses a number of storage mechanisms for images and
metadata and provides an application programming inter-
face for using remoting image analysis tools that are based
on C++, Python, Matlab, or Java. Recently added function-
ality also allows for organizing quantitative features in
tables.
In HCS, it is crucial to keep track of quantitative fea-

tures. OpenBIS [149] is a framework for constructing
user-friendly, scalable, and powerful information systems
for HCS data and metadata. OpenBIS allows users to
collect, integrate, share, and publish image-based data
and connect to data processing pipelines. This frame-
work, which is built on a hierarchical structure ranging
from project management layers to sample specific
datasets, is easily extensible and specialized but not lim-
ited to imaging projects. OpenBIS is a flexible platform
for handling images, structured metadata (e.g., sample
annotations), and unstructured data (e.g., attached files),
and is scalable to very large data.
A combination of databases with workflow systems

such as KNIME can enable the integration of functional-
ities beyond the scope of classical image databases. For
example, the KNIME node 1Click1View (1C1V) was de-
veloped to facilitate a link between large-scale image
data sets from HCS and numeric data [115]. At the level
of screening plates, 1C1V can be used to visualize quan-
titative features in form of heatmaps. Phaedra [173], an-
other informatics tool connecting to KNIME, has been
developed to support workflows for drug screening and
target discovery. This tool can be used to plot dose–re-
sponse curves, manage exclusion and annotation options,
and perform cell classification, statistical quality controls,
and reporting.

Conclusions
Historically, microscopy has been a qualitative tech-
nique. However, due to advances in labeling and imaging
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methods, as well as computer vision and informatics,
modern microscopy has widely improved the extraction
of meaningful quantitative data from biological samples.
Despite technological advances, a balance between ex-
perimental throughput, which is required for statistical
significance, and the potential output of new biological
knowledge needs to be found. Clear research plans and
prior knowledge are key requisites for the progress of
translational systems biomedicine. In many cases, image-
based approaches can make major contributions. How-
ever, it is crucial to choose an adequate experimental
model and use imaging technology that optimally fits with
the chosen methods and properties of the sample. Given
the vast variety of light microscopy applications in systems
biology, the search for a universal image analysis tool that
covers all the needs is often illusive. The correct approach
is to focus on the production of high-quality raw data and
use the flexibility of existing image analysis tools for
integrating required image analysis and data processing
workflows.
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