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CD39 is a negative regulator of P2X7-mediated
inflammatory cell death in mast cells
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Abstract

Background: Mast cells (MCs) are major contributors to an inflammatory milieu. One of the most potent drivers of
inflammation is the cytokine IL-1β, which is produced in the cytoplasm in response to danger signals like LPS. Several
controlling mechanisms have been reported which limit the release of IL-1β. Central to this regulation is the NLRP3
inflammasome, activation of which requires a second danger signal with the capacity to subvert the homeostasis of
lysosomes and mitochondria. High concentrations of extracellular ATP have the capability to perturb the plasma
membrane by activation of P2X7 channels and serve as such a danger signal. In this study we investigate the role
of P2X7 channels and the ecto-5´-nucleotidase CD39 in ATP-triggered release of IL-1β from LPS-treated mast cells.

Results: We report that in MCs CD39 sets an activation threshold for the P2X7-dependent inflammatory cell death
and concomitant IL-1β release. Knock-out of CD39 or stimulation with non-hydrolysable ATP led to a lower activation
threshold for P2X7-dependent responses. We found that stimulation of LPS-primed MCs with high doses of ATP readily
induced inflammatory cell death. Yet, cell death-dependent release of IL-1β yielded only minute amounts of IL-1β.
Intriguingly, stimulation with low ATP concentrations augmented the production of IL-1β in LPS-primed MCs in a
P2X7-independent but caspase-1-dependent manner.

Conclusion: Our study demonstrates that the fine-tuned interplay between ATP and different surface molecules
recognizing or modifying ATP can control inflammatory and cell death decisions.
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Background
The innate immune system is essential for the elimination
of microbial invaders. It is engaged via germ-line-encoded
pattern recognition receptors (PRRs) that recognize diverse
pathogen-associated molecular patterns (PAMPs) [1] as
well as endogenous, danger-associated molecular patterns
(DAMPs) [2,3] released during infection or cellular
damage [2,4]. Engaged PRRs activate cellular defense
mechanisms, which eliminate the imminent threat.
Prominent among these mechanisms is the release of
the pro-inflammatory cytokine IL-1β. One of the major
signaling-hubs of these defense mechanisms is the inflam-
masome, a multi-protein complex that drives activation
of caspase-1. In turn, caspase-1 cleaves pro-IL-1β, an
important step preceding the release of the signaling-
competent mature IL-1β (mat-IL-1β) [5]. A two-step
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mechanism that requires two distinct signals leads to
the activation of the inflammasome. The first signal
derives from activation of PRRs, stimulating the NF-κB-
dependent transcription of mediators like pro-IL-1β and
of components of the inflammasome e.g. the cytoplasmic
sensor NACHT, LRR and PYD domains-containing protein
3 (NLRP3). The second signal then activates the NLRP3
inflammasome through a variety of ligands including ATP,
crystalline or particular compounds, and bacteria-derived
ionophores [6]. All of these second stimuli share the ability
to subvert the homeostasis of the cell by destabilization
of lysosomes and mitochondria or by perturbation of the
plasma membrane [7,8]. Thus, pyroptosis, the inflamma-
tory cell death, seems to be an inevitable consequence of
inflammasome-engaging second signals.
Among the purinergic receptors P2X7 is the known

activator of the NLRP3 inflammasome. It has a low affinity
for its sole natural ligand ATP and forms homo-multimeric
ion channels with low selectivity for Ca2+, Na+, and K+ [9].
Furthermore, P2X7 incorporates pannexin-1 resulting
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in the formation of non-selective pores permeable to
molecules up to 900 Da [10,11]. The exact mechanism by
which P2X7 triggers the NLRP3 inflammasome is subject
to intensive research. Ultimately, stimulation of the P2X7
receptor with high doses of ATP leads to perturbation of
the plasma membrane and subsequent cell death [9].
Extracellular ATP is cytotoxic to lymphocytes [12]. The

ecto-nucleoside triphosphate diphosphohydrolase CD39
converts ATP to AMP, thus limiting the concentrations of
extracellular ATP. CD39 has been attributed a protective
role in P2X7-mediated apoptosis of endothelial cells [13]
and a negative regulatory role for mat-IL-1β release
from macrophages (MΦ) [14]. Accordingly, loss of CD39
promotes lung inflammation upon LPS challenge [15].
Released mat-IL-1β mediates a variety of local and sys-

temic responses to infection e.g., induction of fever and
promotion of T cell responses [16]. These traits confer
such impact on inflammatory processes that tight control
mechanisms of IL-1β production and release have evolved
to protect the host. In fact, diseases classified as auto-
inflammatory stem from deregulated IL-1β release [17].
Mast cells (MCs) are most recognized for their effector

role in the immune response against parasites [18,19].
They line the tissues forming the interface to the outside
environment, namely skin, lung and gastro-intestinal
tract. Equipped with an array of receptors, MCs sense
diverse PAMPs [1] and DAMPs [2,3]. Once activated,
MCs start the biosynthesis and release of pro-inflammatory
mediators e.g., IL-1β and IL-6, as well as immune-
regulatory mediators [1].
In the present study we demonstrate that CD39 nega-

tively regulates the P2X7-dependent release of IL-1β
from LPS-primed bone marrow-derived MCs (BMMCs).
In contrast to findings in MΦs and dendritic cells, IL-1β
release from BMMCs was causally linked to cell death
and did not require processing into mat-IL-1β.

Results
Correlation of IL-1β release and cell death in MCs
We have previously shown that challenging BMMCs
with the TLR4 ligand, LPS, or the endogenous alarmin
IL-33 resulted in rapid production and release of IL-6 and
TNF-α [20]. In parallel, the IL-1β gene was transcribed
and pro-IL-1β was produced and retained intracellularly
(Additional file 1A-C). In accordance with findings in
MΦs, IL-1β processing and subsequent release required a
second danger signal. Therefore, we employed the widely
used model of ATP stimulation. Thus, excessive amounts
of ATP (3 mM), as may be present in areas of tissue injury
[21], or as consequence of active secretion [22,23], led to
the release of IL-1β from BMMCs while the amount of
intracellular IL-1β was reduced (Figure 1A). Of note, the
used ELISA did not discriminate between pro- and mat-
IL-1β. We observed a substantial discrepancy between the
amounts of released, and intracellularly retained IL-1β
indicating a degradation process during its release. Upon
release IL-1β was not further degraded within the 1 h
timeframe of ATP stimulation, as the amount of IL-1β in
the SN increased time-dependently (Additional file 1D).
In contrast to the high dose ATP stimulation (3 mM),
addition of low ATP concentrations (0.3 mM) led to an
augmented production of pro-IL-1β and IL-6 compared
to LPS-primed control cells (Figure 1A + B). Since
addition of 3 mM ATP might cause stress to the cells by
osmotic strain, we sought to thoroughly assess the via-
bility of the BMMCs after stimulation with ATP by flow
cytometry. We found a striking correlation between the
release of IL-1β (Figure 1A) and the occurrence of cell
death as indicated by propidium iodide (Pi) positive cells
(Figure 1C). Furthermore, stimulation with ATP induced
dramatic morphological changes in respect to size (FSC)
and light refraction (SSC) of the BMMCs (Figure 1D).
While 0.3 mM ATP led to a minor increase of the FSC,
stimulation with 3 mM ATP induced the formation of a
2nd population with increased SSC and smaller cell
bodies. This 2nd population comprised the Pi + cells
(Additional file 1F) and increased with the duration of
ATP stimulation (Additional file 1E).
Stimulation with 3 mM ATP also resulted in an in-

crease of annexin V (AV) + cells (Figure 1D lower panel).
Early exposure of phosphatidylserine (PS) and loss of
membrane integrity are characteristics of caspase-1-
dependent pyroptosis [24,25]. Accordingly, we expected
to find mat-IL-1β rather than pro-IL-1β in the SN of
BMMCs stimulated with 3 mM ATP (Figure 1E). To
our surprise, we detected predominantly pro-IL-1β (a)
but only minute amounts of mat-IL-1β (c). A third band
(b) was also present in the SN representing the p20
form of IL-1β, truncated independently of caspase-1
[26]. At the same time we found enriched p85, the
regulatory subunit of the cytosolic signaling protein
PI3K, in the SN when BMMCs were stimulated with
3 mM ATP. We interpreted extracellular p85 as a clear
indicator for the breakdown of cellular integrity. These
data indicated that pro- and mat-IL-1β might be re-
leased from BMMCs in a lytic, cell death-dependent
process.

Caspase-1 controls production of pro-IL-1β
Pharmacological inhibition of caspase-1 attenuated the
amount of released IL-1β without affecting the number
of Pi + cells (Figure 2A). However, we found that the
augmented intracellular expression of pro-IL-1β protein
in response to 0.3 mM ATP was sensitive to caspase-1
inhibition (Figure 2B). This raised the question whether
the observed reduction in IL-1β release in the presence
of the caspase-1 inhibitor was actually due to the inabil-
ity of caspase-1 to facilitate the processing and release of
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Figure 1 (See legend on next page.)
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Figure 1 Correlation of IL-1β release and cell death in mast cells. (A) wt BMMCs were primed with 1 μg/ml LPS for 3.5 h and then left untreated
or stimulated with the indicated concentrations [mM] of ATP for 1 h. TCL and SN were probed for IL-1β by ELISA (n = 8). (B) Treatment as in (A); SN
was probed for IL-6 by ELISA (n = 4). (C) Treatment as in (A); wt BMMCs were stained with Pi and analyzed by FACS (n = 13). (D) Treatment as in (A);
cells were stained with FITC-conjugated Annexin V and Pi and analyzed by FACS. The morphology is displayed in the forward and side scatter (FSC/
SSC); representative result (n = 12). (E) wt BMMCs were primed with 1 μg/ml LPS for 3.5 h. The cells were then concentrated to 2*106 cells/60 μL and
left untreated or stimulated with the indicated concentrations of ATP for 1 h. TCL and SN were then analyzed by immunoblotting with anti-IL-1β (top
and middle panel) and anti-p85 (bottom panel, loading control). For details on indicated bands see text. Shown are means and SD of replicates of one
representative experiment each. Statistical analysis of n independent experiments by LMM; FDR-corrected p-values: * < 0.05, ** < 0.005, and *** < 0.0005.
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IL-1β or rather the lack of caspase-1-dependent aug-
mented production of pro-IL-1β. By qPCR analysis we
found that the augmented production of pro-IL-1β was
also evident on transcript level. This indicated that the
observed boost in pro-IL-1β originated from enhanced
transcription rather than a modulation of the translation.
Application of the caspase-1 inhibitor nullified the en-
hancing effect of 0.3 mM ATP on the transcript level
(Figure 2C).
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Figure 2 Caspase-1 controls production of IL-1β in mast cells. (A) wt BMM
stimulated with the indicated concentrations [mM] of ATP for 1 h; vehicle (DM
with ATP. TCL and SN were probed for IL-1β by ELISA (n = 5) (left panel). BMMC
(B) Treatment as in (A); TCL of wt BMMCs was probed for IL- β by ELISA (n = 5
Shown are means and SD of replicates of one representative experiment each
p-values: * < 0.05, ** < 0.005, and *** < 0.0005.
Taken together, these findings suggest that caspase-1 is
not required for the ATP-triggered inflammatory cell
death in BMMCs. Yet, caspase-1 seems to regulate the
amount of released IL-1β, at least in part, by influencing
the transcription and biosynthesis of pro-IL-1β.

P2X7 is required for cell death and IL-1β release
BMMCs express transcripts of several ATP-specific recep-
tors of the P2 family (Additional file 2A). Prominently,
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they express P2X7, a low-affinity receptor for ATP.
300 μM ATP have been demonstrated to induce the for-
mation of multimeric P2X7 ion-channels [27]. At con-
centrations in the mM range, pannexin-1 gets
incorporated into P2X7 pores allowing passage of mole-
cules up to 900 Da [10,28]. Because of the correlation
between cell death, IL-1β release and the presence of
pro- and mat-IL-1β in the SN, we tested the requirement
for P2X7 in ATP-induced cell death and IL-1β release. To
this end, we generated P2rx7−/− BMMCs from respective
knockout mice. After four weeks of culture, differentiation
of wt and P2rx7−/− BMMCs was comparable according
to expression of FcεRI and Kit (Additional file 2B). As ex-
pected, LPS-primed P2rx7−/− BMMCs treated with
3 mM ATP did not release IL-1β (Figure 3A). In line with
our previous results, P2rx7−/− cells showed no cell death
upon ATP stimulation either (Figure 3B). In fact, P2rx7
−/− BMMCs were completely protected from the detri-
mental effects of ATP stimulation. The hallmark 2nd
population in samples of wt BMMCs treated with 3 mM
ATP was absent in cultures of ATP-treated P2rx7−/− cells
as well as the above mentioned changes in the FSC and
SSC (Figure 3C). Another striking difference was the lack
of PS on the surface of P2rx7−/− BMMCs in contrast to
wt cells treated with 3 mM ATP (Figure 3C lower panel).
We concluded that the initiation of ATP-induced inflam-
matory cell death of BMMCs strictly required the action
of P2X7. We further tested for processing and release
of IL-1β (Figure 3D); yet, we could not detect mat-IL-1β
in the SN and pro-IL-1β (a) did not rise above back-
ground levels with ATP stimulation. Noteworthy, increased
production of pro-IL-1β (as measured in the TCL) and
IL-6 induced by 0.3 mM ATP were independent of
P2X7 (Figure 3A + E). Consequently, BMMC stimulation
with ATP must induce P2X7-independent signaling
pathways as well. We observed transient activation of the
MAPKs ERK1/2 in wt cells from 1 to 5 min after stimula-
tion with 0.3 mM ATP. In contrast, P2rx7−/− BMMCs
showed an even shorter phosphorylation of ERK1/2
(Additional file 3A upper panel). We also found that
stimulation with 0.3 mM ATP induced a rapid rise in
intracellular Ca2+ levels, which slowly declined over time.
This Ca2+ flux was sensitive to the P2X7 antagonist KN-62
save for an initial Ca2+ peak (Additional file 3B). The same
initial spike in Ca2+ levels could be observed in P2rx7−/−
BMMCs stimulated with 0.3 mM ATP. This spike was in-
sensitive to KN-62, in line with a contribution of other
ATP-sensitive receptors than P2X7. However, activation of
ERK1/2 and Ca2+ mobilization served merely as readouts
for P2X7-independent signaling and their consequences
with respect to the observed augmented cytokine pro-
duction remain elusive as interference with ERK signal-
ing or Ca2+ mobilization could not significantly alter
cytokine production (not shown).
So far, these data suggest that ATP-triggered cell death
and release of IL-1β are initiated in a P2X7-dependent
manner (Figure 3C, D, and E); yet, ATP initiates signaling
(Additional file 3A + B) and affects production of pro-IL-
1β and IL-6 (Figure 3A + B) in a P2X7-independent
manner.

CD39 is a negative regulator of ATP-induced IL-1β release
and cell death
Since the release of IL-1β and the concomitant cell death
required high concentrations of ATP, ecto-nucleotidases on
the MC surface could set the threshold for ATP-induced
cell death and IL-1β release. The ecto-nucleotidase CD39
has been implicated in the regulation of ATP-induced re-
sponses of MΦs and is also expressed on MCs (Additional
file 2A). We generated BMMCs from Cd39−/− mice, which
developed comparably to wt cells (Additional file 2B).
Strikingly, these BMMCs released IL-1β even at
0.3 mM ATP as efficiently as wt BMMCs stimulated
with 3 mM ATP (Figure 4A). In agreement with our previ-
ous findings, Cd39−/− BMMCs were highly susceptible to
ATP-induced cell death, indicated by a significant Pi + cell
population already after stimulation with 0.3 mM ATP
(Figure 4B). Furthermore, Cd39−/− BMMCs stimulated
with 0.3 mM ATP showed a comparable AV/Pi staining
pattern as wt BMMCs stimulated with 3 mM ATP. Under
these conditions the morphological changes (FSC, SSC)
of Cd39−/− cells were comparable to those observed in
wt BMMCs at 10 fold higher concentrations of ATP
(Figure 4C). Along this line, the destructive impact of
3 mM ATP on Cd39−/− BMMCs was much stronger
when compared to wt cells. Since this higher susceptibility
of Cd39−/− BMMCs might also encompass a higher effi-
ciency in IL-1β processing, we tested for processing
and release of pro-IL-1β (Figure 4D). Indeed, analysis of
concentrated SN from ATP-stimulated Cd39−/− BMMCs
revealed a faint band of about 17 kDa (c) when the cells
were stimulated with 0.3 mM ATP and, slightly stronger,
with 3 mM ATP. As described earlier, the p20 form of IL-
1β (b) was also detectable in the SN. The LPS-induced
production of IL-6 seemed to be unaffected by the loss of
CD39 (Figure 4E). Augmented pro-IL-1β and IL-6 pro-
duction upon low dose ATP stimulation were unaltered
in Cd39−/− BMMCs. These data led us to hypothesize
that the absence of CD39 led to a sustained stimulation
with high concentrations of ATP, which accounted for
the increased susceptibility of Cd39−/− BMMCs to ATP-
induced inflammatory cell death and IL-1β release.

Non-hydrolysable ATP aggravates cell death and IL-1β
release
Extracellular ATP has a short half-life and is efficiently
degraded by CD39 [29]. Consequently, the use of ATPγS,
a non-hydrolysable derivate of ATP, should mimic the
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phenotype of Cd39−/− BMMCs and exert its effects at
considerably lower concentrations than ATP. Stimulation
of LPS-primed wt BMMCs with up to 0.3 mM ATPγS in-
creased the production of IL-1β and IL-6 (Figure 5A + B)
while stimulations with 1 mM ATPγS induced cell death
and release of IL-1β (Figure 5C +D). 1 mM ATPγS also
induced the morphological changes and the AV/Pi stain-
ing pattern of cell death as observed in wt BMMCs
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stimulated with 3 mM ATP (Figure 5E). As predicted,
ATPγS was more efficient than ATP, with effective concen-
trations about 3 fold lower than the amounts of ATP. In
support of the idea that persistent stimulation by ATPγS
might be accountable for its increased efficiency over ATP,
we observed a prolonged activation of ERK1/2 when wt
BMMCs were stimulated with ATPγS rather than ATP
(Additional file 3A). In agreement with the pivotal role of
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P2X7, ATPγS-mediated cell death and IL-1β release
(Figure 5A-E), as well as prolonged signaling (Additional
file 3A lower panel) were completely absent in P2rx7−/−
BMMCs.
Discussion
In this study we report that CD39 is a negative regulator
of ATP-induced inflammatory cell death and IL-1β release
in MCs. The loss of CD39 significantly lowered the
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threshold for ATP-triggered IL-1β release and cell
death. We corroborated these findings by using the
non-hydrolysable ATPγS, which mimicked the Cd39−/−
phenotype. Our results confirm and extend the pivotal
role of the ATP receptor P2X7 in initiating IL-1β release
and cell death. We also found ATP-induced P2X7-
independent signaling, which substantially contributed to
the production of pro-IL-1β and IL-6. Lastly, the ATP-
induced release of IL-1β from MCs seems to be partially
independent of caspase-1 activity since pro-IL-1β was
found in higher abundance than mat-IL-1β in the SN of
ATP-stimulated MCs.
CD39 plays a pivotal role in the regulation of the

physiological concentrations of extracellular nucleotides
in the mucosa [30]. Specifically for MΦs, CD39 has been
shown to modulate the P2X7-dependent activation of
the NLRP3 inflammasome [14]. On a broader scale,
Théâtre et al. recently showed that in transgenic mice
overexpressing CD39 exceedingly reduced concentrations
of extracellular ATP promoted lung inflammation in
response to LPS administration [31]. Upon challenge
they observed enhanced recruitment of neutrophils and
MΦs, elevated levels of IL-6 and other inflammatory
factors but not IL-1β in the bronchoalveolar lavage
(BAL). One could hypothesize that the decreased ATP
concentrations in CD39 overexpressing mice resulted
in sub-lethal stimulation of immune cells. This in turn
led to augmented cytokine levels, except IL-1β, in the
BAL. Stimulation of LPS-primed wt BMMCs with low
doses of ATP nicely reflected and partly explained these
findings. These cells secreted substantially more IL-6
and produced more pro-IL-1β compared to BMMCs
primed with LPS alone, while secretion of IL-1β was
unaltered. In line with these findings stimulation of
Cd39−/− BMMCs with low doses of ATP already induced
release of IL-1β and morphological signs of cell death
comparable to wt BMMCs stimulated with 10 fold
more ATP. As an alternative approach we employed
ATPγS, which led to IL-1β release and cell death at 3
fold lower concentrations than ATP, in a completely
P2X7-dependent manner. Considering the lower potency
of ATPγS to activate P2X7 compared to ATP [32], these
results mimic the Cd39−/− phenotype and thus support
the negative role for CD39 on P2X7-mediated responses
in BMMCs. The efficient removal of extracellular ATP by
CD39 together with the low affinity of P2X7 for ATP [27]
represent a stringent activation threshold preventing pre-
mature IL-1β release from MCs at sites of inflammation
or tissue damage. However, this threshold could be biased
according to the type of tissue and/or the nature of the
thread by modulation of CD39 expression.
In an attempt to comprehensively study the release of

IL-1β from BMMCs we also monitored the production
of intracellular pro-IL-1β and its expected reduction
during ATP-induced release. We observed augmented
pro-IL-1β production in LPS-primed BMMCs after
stimulation with low doses of ATP. The same applied for
the production of IL-6. This effect was not dependent
on P2X7, yet originated from ATP-induced signaling
since stimulation of Cd39−/− BMMCs with ATP or ATPγS
treatment of wt cells, both of which forestalled the conver-
sion of ATP to AMP and adenosine, yielded comparable
results. We observed P2X7-independent mobilization of
cellular Ca2+ flux and activation of the MAPKs ERK1/2
after stimulation with low doses of ATP (Additional file
3A + B). The very short-lived phosphorylation of ERK1/2
and the equally brief spike in Ca2+ mobilization resem-
bled the kinetic footprint of G-protein coupled recep-
tors (GPCR). In all likelihood, these GPCRs are members
of the P2Y subfamily of ATP receptors (Additional file
2A), which have also been implicated in the degranulation
of MCs [33].
Our observations regarding the release of pro-IL-1β

and the concomitant cell death after stimulation with
high doses of ATP are in contrast to the established
model of IL-1β secretion during pyroptosis, which is
characterized by the cleavage of pro-IL-1β into the
mature and signaling competent form [34,35]. Western
blot analysis revealed that LPS-primed BMMCs pre-
dominantly released pro-IL-1β when stimulated with
high doses of ATP. Two minor bands were also present:
the p20 form of IL-1β [26] and mat-IL-1β at 17 kDa.
We further observed that stimulation with ATP induced
the release of β-hexosaminidase, a common readout for
degranulation (not shown). It is thus likely that upon
stimulation of BMMCs with high doses of ATP, released
pro-IL-1β encountered active MC-derived proteases in
the extracellular space. This could result in caspase-1-
independent processing of pro-IL-1β as has been reported
for MC- and neutrophil-derived chymases, elastases
[36,37], and others [38-40]. This process might be
aggravated in the context of allergic diseases where
IgE-triggered degranulation might enhance extracellular
conversion of pro- into mat-IL-1β. However, co-stimulation
of LPS-primed BMMCs with antigen resulted in attenuated
production of pro-IL-1β [20] which would imply a generally
attenuated production of pro-IL-1β. Hence, pro-IL-1β
could be converted into mat-IL-1β in a caspase-1-
independent manner after its release from MCs.
We also observed a striking discrepancy between the

decrease of pro-IL-1β in the TCL and the minute
amounts of IL-1β actually detectable in the SN by
ELISA. A partial degradation of IL-1β by endolysosomal
processes in monocytes [41] and the involvement of
autophagosomal degradation has been reported [42]. MCs
are packed with protease-filled secretory granules. Thus,
upon disruption of the membrane homeostasis and lyso-
some destabilization by excessive amounts of extracellular
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ATP, the contents of these granules could effectively
cleave and ultimately inactivate a large proportion of
IL-1β. Though, preliminary data indicate that inhibition
of chymotrypsin and trypsin-like proteases rescues a
certain amount of extracellular IL-1β (not shown), the
plethora of MC-derived proteases in the SN makes it
extremely difficult to discern productive cleavage of pro-
IL-1β into mat-IL-1β from degradation.
Several unconventional release modes have been pro-

posed for IL-1β depending on the cell type and nature of
the stimuli [5]. In this work, BMMCs treated with high
doses of ATP displayed a strict correlation between IL-
1β release and cell death suggesting a terminal release
mechanism similar to pyroptosis. Indeed, high doses of
ATP induced early exposure of PS on the outer leaflet of
the plasma membrane (PM) and the hallmark release
of IL-1β. Pyroptosis is driven by active caspase-1,
which facilitates the processing and release of IL-1β
and the onset of programmed cell death [43,44]. Indeed,
inhibition of caspase-1 reduced the release of IL-1β after
stimulation with high doses of ATP but it also significantly
reduced the augmented pro-IL-1β production of LPS-
primed BMMCs after stimulation with low doses of ATP
(Figure 2A-C). This finding is in line with reports that
caspase-1 modulates the activity of NF-κB-dependent
gene expression [45,46] and warrants caution when inter-
preting the impact of caspase-1 inhibition based solely on
the release of IL-1β. Furthermore, inhibition of caspase-1
failed to reduce ATP-triggered cell death. Recent work
has implicated non-canonical and caspase-1-independent
functions of the inflammasome. Via yet unknown recep-
tors, the inflammasome senses the presence of cytosolic
LPS and leads to the release of IL-1β and to pyroptosis in
a caspase-11-dependent manner [47]. The challenge of
future research will be to separate the canonical from
the non-canonical activation of the inflammasome after
stimulation with any danger signal that perturbs the
membrane integrity. In summary, stimulation with high
doses of ATP induced P2X7-dependent but caspase-1-
independent inflammatory cell death, which might be
categorized as non-canonical pyroptosis.

Conclusions
Since MCs are located in diverse tissues, a site-specific
immune response must be mounted to fight pathogens
while avoiding undue inflammation and tissue damage.
Therefore, MC subtypes are shaped by the microenvir-
onment within the diverse tissues. This ensures that
MCs provide a tailored immune response by releasing a
tissue-specific profile of bioactive mediators [48]. Differ-
ential control of the ATP-induced release of IL-1β could
be a consequence of these site-specific MC subtypes also
reflected in different results gained by varying BMMC
culture techniques [49]. CD39 appears to be a good
candidate to further investigate the differential regulation
between MC subtypes. It is not only able to set a threshold
for ATP-induced activation of P2X7 but further provides
new ligands for other purinergic receptors by processing
ATP, in combination with CD73, to adenosine.

Methods
Cell culture
According to procedures established by Razin et al. [50],
bone marrow cells (2×106/ml) from 6 to 8 week old male
mice (129/Sv × C57Bl/6) were cultured (37°C, 5% CO2) as
single cell suspensions in culture medium (RPMI 1640
medium containing 12% FCS, 1% X63Ag8-653-conditioned
medium, as a source of IL-3 [51], 2 mM L-glutamine,
1×10-5 M 2-mercaptoethanol, 50 units/ml penicillin,
and 50 mg/ml streptomycin). At weekly intervals, the
non-adherent cells were reseeded at 1×106 cells/ml in
fresh medium. By 4–5 weeks in culture, greater than
99% of the cells were kit and FcεR1 positive as assessed
by phycoerythrin-labeled anti-kit antibodies (Pharmingen,
Mississauga, Canada) and FITC-labeled rat anti-mouse
IgE antibodies (Southern Biotechnology, Birmingham, AL,
USA), respectively. P2rx7−/− and Cd39−/− BMMCs were
in vitro differentiated using the same protocol but starting
from bone marrow cells of 6 to 8 week old P2rx7−/− and
Cd39−/− (both C57Bl/6) mice.

Reagents
R-form LPS from S. minnesota mutant R595 was extracted
and purified as described [52,53] and was a gift from M.
Freudenberg and C. Galanos (MPI for Immunobiology,
Freiburg, Germany). The synthetic lipopetide FSL-1
was obtained from Echaz Microcollections (Tübingen,
Germany). IL-33 was purchased from Axxora Deutschland
GmbH (Grünberg, Germany). ATP and ATPγS were pur-
chased from Sigma (Germany). DMSO was purchased from
Carl Roth GmbH & Co (Karlsruhe, Germany).

Stimulation of mast cells
BMMCs were supplied with fresh culture medium over
night to ensure maximum viability. The cells were resus-
pended in stimulation medium (growth medium w/o IL-3)
at a density of 1×106/ml and transferred to 96well plates.
Upon stimulation as indicated in the figure legends, the
SN and TCL were separated by centrifugation and further
analyzed.

Cytokine ELISA
Mouse IL-6 ELISAs and mouse IL-1β ELISAs (BD,
Heidelberg, Germany) were performed according to
the manufacturer’s instructions. IL-6 was measured in
supernatants. IL-1β was measured from total cell lysates
(TCL) and supernatants (SN). Levels of cytokines varied
between experiments due to genetic background or age of
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the cells. Qualitative differences or similarities between
WT and mutant cells, however, were consistent through-
out the study.

Flow cytometry
BMMCs were stained with FITC-conjugated Annexin V
(ImmunoTools, Friesoythe, Germany) and Pi (Sigma,
Germany) for 15 min and analyzed by flow cytometry
using a FACScanto II (BD, Heidelberg, Germany). The
settings of the flow cytometer were identical for all
measurements within each experiment. The acquired
data were further analyzed using FlowJo analysis software
(Tree Star, Ashland, USA). Unless stated otherwise, the
figures represent ungated, total events.

Western blotting
BMMCs were pelleted and solubilized with 0.5% NP-40
and 0.1% Na-deoxycholate in phosphorylation solubili-
zation buffer at 4°C [54]. The postnuclear supernatants
were subjected directly to SDS-PAGE and Western blot
analysis as described previously [55]. Anti-P-ERK 1/2
was purchased from Cell Signaling Technologies (Danvers,
USA), anti-p85 from Millipore (Billerica, USA), anti-actin
from Santa Cruz Biotechnology (Dallas, USA), and anti-IL-
1β from R&D Systems (Minneapolis, USA).

RT-qPCR
Total RNA of 4*106 cells was extracted using the RNeasy
Mini Kit (Qiagen) according to the manufacturer's
instructions. RNA (1 μg) was reverse transcribed using
Random hexamers (Roche) and Omniscript RT Kit
(Qiagen) according to the manufacturer's instructions.
qPCR was performed on a Rotorgene (Qiagen) with Sybr
green reaction mix (Bioline #QT650-02). Expression of
IL-1β transcript was normalized to the housekeeper
mGUSB (Qiagen). Primer: IL-1β fwd; AAC CTG CTG
GTG TGT GAC GTT C, rev; CAG CAC GAG GCT
TTT TTG TTG T; eff.: 0.99029, Gusb (Qiagan) cat. #
QT00176715; eff.: 1.01478.

Statistical analysis
Data generated from independent experiments were
analyzed by a linear mixed model (LMM) using the
least square mean differences approach followed by
unpaired, two-tailed t-test. Resulting p-values were
adjusted for multiple comparisons by false discovery rate
(FDR). Figures represent means and SD of replicates of
one representative experiment each. Statistical analysis
of n independent experiments (with n indicated in the
respective figure legends). p-values of * < 0.05, ** < 0.005,
and *** < 0.0005 were considered statistically significant.
All statistical analysis was performed using JMP ver. 10
(SAS, Cary NC, USA).
Additional files

Additional file 1: Production and release of IL-1β are coupled
to cell fate. A) wt BMMCs were primed with 1 μg/ml LPS or 2 ng/ml IL-33
for 3.5 h. TCL and SN were probed for IL-1β by ELISA (n=3). B) 4*106 wt
BMMCs were treated as in A. qPCR was performed using primers for IL-1β
normalized to Gusb (n=3). C) wt BMMCs were left untreated or primed with 2
ng/ml IL-33 or 1 μg/ml LPS for 3.5 h. TCL was analyzed by immunoblotting
with anti-IL-1β and anti-actin antibodies (loading control). The equivalent of
3*105 has been loaded per lane. D) wt BMMCs were primed with 1 μg/ml
LPS for 3.5 h and then left untreated or stimulated with 3 mM ATP for the
indicated times. SN was probed for IL-1β by ELISA (n=3). E) wt BMMCs were
treated as in D, stained with Pi and analyzed by FACS (n=3). F) wt BMMCs
were treated as in A, stained with FITC-conjugated Annexin V (AV) and Pi and
analyzed by FACS. Gates were positioned to circumference the two distinct
populations apparent in the FSC/SSC dot plot and the respective staining
patterns for AV/Pi were displayed in the assigned dot plots.

Additional file 2: Expression of P2Rs and CD39 on BMMCs and
differentiation control. A) Quantitative PCR was performed on a
LightCyler 480 (Roche, Mannheim, Germany) using the Fast Blue qPCR
Mastermix Plus kit that includes UNG (Uracyl-N-glycosylase for carry-over
prevention), (Eurogentec, Cologne, Germany). β2-microglobulin (β2m) was
used as reference gene, forward primer: 5’_GGTGCTTGTCTCACTGAC_3’,
probe: 5’_FAM-ATGCTATGCACAAAACGCCTC-BHQ-1_3’ reverse primer:
5’_GTTCGGCTTCCCATTCTC_3’, efficiency: 99.4%, locked nucleic acids are
shown with an underline. Relative quantification analysis and primer/probe
design were done as previously described [56]. Primers for P2rx1:
Mm00435460_m1, P2rx3: Mm00523701_g1, P2rx4: Mm00501795_g1,
P2rx7: Mm01199500_m1, P2ry1: Mm02619947_s1, P2ry2: Mm04207602_m1,
P2ry4: Mm00445136_s1, P2ry6: Mm01275473_m1, P2ry12: Mm01283320_m1,
P2ry13: Mm00546978_m1, P2ry14: Mm01289602_m1, CD39: Mm00515447_m1,
and CD73: Mm00501915_m1 from Applied Biosystems (Darmstadt, Germany).
B) After 4 weeks in culture wt, P2rx7-/-, and Cd39-/- BMMCs were probed with
anti-FcεRI-FITC (eBioscience, San Diego, USA) and anti-Kit-PE (BD, Heidelberg,
Germany) antibodies for surface expression of respective receptors.

Additional file 3: P2X7-independent ATP signaling in BMMCs.
A) wt and P2rx7-/- BMMCs were primed with 1 μg/ml LPS for 3.5 h and
then left untreated or stimulated with 0.3 mM ATP or 0.3 mM ATPγS for the
indicated times. TCL were then subjected to anti-P-Erk1/2 (upper panel) and
anti-p85 (lower panel) immunoblotting. B) wt and P2rx7-/- BMMCs were
stained with Ca2+-sensitive dyes Fura Red-AM and Fluo-3-AM (invitrogen,
Darmstadt, Germany) in RPMI containing 12% FCS for 40 min at 37°C. Ca2+
flux was monitored by flow cytometry. Baseline fluorescence intensities of
both dyes were set to the same height. After 30 sec vehicle or KN-62 was
added for 5 min and than ATP [0.3 mM] was added for another 5 min. The
ratio of Fluo-3/Fura Red * 10 was calculated and the results were converted
to kinetics using FlowJo analysis software.
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