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Intrinsic disorder is an essential
characteristic of components in the
conserved circadian circuit
Jacqueline F. Pelham1, Jay C. Dunlap2* and Jennifer M. Hurley1,3*

Abstract

Introduction: The circadian circuit, a roughly 24 h molecular feedback loop, or clock, is conserved from bacteria to
animals and allows for enhanced organismal survival by facilitating the anticipation of the day/night cycle. With
circadian regulation reportedly impacting as high as 80% of protein coding genes in higher eukaryotes, the protein-
based circadian clock broadly regulates physiology and behavior. Due to the extensive interconnection between
the clock and other cellular systems, chronic disruption of these molecular rhythms leads to a decrease in organismal
fitness as well as an increase of disease rates in humans. Importantly, recent research has demonstrated that proteins
comprising the circadian clock network display a significant amount of intrinsic disorder.

Main body: In this work, we focus on the extent of intrinsic disorder in the circadian clock and its potential mechanistic
role in circadian timing. We highlight the conservation of disorder by quantifying the extent of computationally-predicted
protein disorder in the core clock of the key eukaryotic circadian model organisms Drosophila melanogaster, Neurospora
crassa, and Mus musculus. We further examine previously published work, as well as feature novel experimental evidence,
demonstrating that the core negative arm circadian period drivers FREQUENCY (Neurospora crassa) and PERIOD-2 (PER2)
(Mus musculus), possess biochemical characteristics of intrinsically disordered proteins. Finally, we discuss the potential
contributions of the inherent biophysical principals of intrinsically disordered proteins that may explain the vital
mechanistic roles they play in the clock to drive their broad evolutionary conservation in circadian timekeeping.

Conclusion: The pervasive conservation of disorder amongst the clock in the crown eukaryotes suggests that disorder is
essential for optimal circadian timing from fungi to animals, providing vital homeostatic cellular maintenance and
coordinating organismal physiology across phylogenetic kingdoms.
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Background
Over the last several billion years, only a select number of
environmental stimuli have remained constant on planet
Earth, one being the Earth’s diurnal cycle. The dependabil-
ity of this cycle has facilitated the evolution of anticipatory

time-keeping mechanisms across all kingdoms of life. These
predictive biological phenomena confer an evolutionary ad-
vantage, increasing both survival and reproductive rates in
the organisms in which they evolved [1–4]. The reach of
these rhythms is vast, spanning many facets of biology with
almost all mesophilic cells maintaining a circadian clock.
The regulation of everything from gene expression to cellu-
lar homeostasis depends on these circadian rhythms, from
unicellular prokaryotes needing to time energy production
with the rising of the sun, to complex higher eukaryotes
with multiple organs and tissue types needing synchronicity

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: jay.c.dunlap@dartmouth.edu; hurlej2@rpi.edu
2Department of Molecular and Systems Biology, Geisel School of Medicine at
Dartmouth, Hanover, NH 03755, USA
1Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
12180, USA
Full list of author information is available at the end of the article

Pelham et al. Cell Communication and Signaling          (2020) 18:181 
https://doi.org/10.1186/s12964-020-00658-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12964-020-00658-y&domain=pdf
http://orcid.org/0000-0002-1085-9391
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jay.c.dunlap@dartmouth.edu
mailto:hurlej2@rpi.edu


(reviewed in [5]). For example, the elegant heliotropism of
the sunflower is a circadian behavior that enables its pre-
sunrise redirection. This circadian timing increases the sur-
face temperature of the flower and thus the number of pol-
linators attracted to its surface as compared to sunflowers
that do not redirect their flower to anticipate sunrise [4].
These overt circadian behaviors have been observed for

hundreds of years, with the first true circadian oscillation
recorded by the astronomer de Marian in the leaf move-
ments of a Mimosa plant in 1729 [6, 7]. Since de Marian’s
initial observation, research in the field of circadian
rhythms has progressed significantly, including the
characterization of the mechanisms that time rhythms at
the molecular level in several model organisms, which led
to the award of the Nobel prize in medicine and physi-
ology in 2017 [8–12]. The central molecular oscillator
that coordinates these rhythms is referred to as the “core
circadian clock”. In animals and fungi, this clock

comprises a protein orchestrated transcription-transla-
tion negative-feedback loop (TTFL), with the positive
arm stimulating the expression of the negative arm [13,
14]. The negative arm then inactivates the positive arm
and represses its own creation, completing its tightly-
timed lifecycle before being inactivated by multiple phos-
phorylations. This allows the positive arm to reinitiate
the cycle, restarting the clock (Fig. 1a) [15, 16]. The regu-
lation of genes beyond those of the negative arm of the
clock by the positive arm creates the bridge between the
core timekeeper and circadian behavior. The number of
genes under the control of the clock varies by organism
and tissue type but is thought to be extensive, with as
much as 80% of mammalian genes predicted to be under
circadian transcriptional regulation across all mammalian
tissue types [17–20]. This transcriptional regulation leads
to an extensive amount of physiological fluctuations over
the circadian day [17, 21, 22].

Fig. 1 Conservation of the Core Clock Architecture. a The Transcription-Translation Negative Feedback Loop (TTFL) in fungi and animals comprises
two main complexes. The first is a pair of heterodimeric activators known as the positive arm complex (green diamond) and the second, a repressing
negative arm complex (red hexagon). The positive arm drives the expression of genes encoding negative arm components leading to the
transcription and translation of the negative arm proteins. The negative arm proteins complex with kinases and are post-translationally modified by
phosphorylation (shown as yellow stars), enabling negative arm repression of the positive arm. Distinct phospho-states trigger both positive-arm
repression (blunted arrow) and negative-arm protein instability (represented by the faded red hexagon). Phosphorylation-related turnover is not
necessary to close the loop in fungi, where this has been examined most closely, but instead represents cellular good housekeeping, cleaning up
proteins that are no longer useful. When active, the positive arm also promotes the expression of clock-controlled genes (ccgs), which are predicted to
control circadian output (reviewed [15]) b In the mammalian clock, positive arm-proteins Brain and Muscle ARNT-Like 1 (BMAL1, also known as ARNTL)
and Circadian Locomotor Output Cycles Kaput (CLOCK) form a complex to activate the negative-arm PERIODs (PER1, PER2, and PER3) in addition to
CRYPTOCHROMEs (CRY1 and CRY2). PERs and CRYs complex with several kinases to repress CLOCK:BMAL activity [16]. In the Neurospora clock, the
positive heterodimer complex is comprised of White Collar-1 (WC-1) and White Collar-2 (WC-2) which together form the White Collar Complex (WCC).
WCC drives the expression of the negative arm component FREQUENCY (FRQ), which, with its essential binding partner FREQUENCY-Interacting RNA
Helicase (FRH), associates with the kinase Casein Kinase-1 (CK-1a) forming the FRQ-FRH Complex (FFC) [23, 24]. The positive-arm constituents in the
Drosophila clock are CYCLE (CYC) and dClk, while the negative arm components are PERIOD (dPER), TIMELESS (TIM) and casein kinase 1, called
DOUBLETIME (DBT) in Drosophila [25]. Figure 1b was created using BioRender.com
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With this sizeable amount of gene regulation, and by ex-
tension physiology, it is no surprise that the disruption of
circadian rhythms has been noted to lead to decreased
physiological fitness [3, 26]. Chronic circadian disruption
has been linked with many disease states, including a higher
risk of obesity, heart disease, diabetes, depression, and can-
cer [27–31]. Furthermore, genes under the control of the
circadian clock show a strong correlation with disease-asso-
ciated genes and out of the top 100 selling drugs in the US,
56 target a gene under circadian regulation (including the
top 7) [32]. With 20% of the working population subject to
“shift work” and the widespread use of digital screens and
blue-light-emitting devices, circadian disruption is a grow-
ing cause of preventable disease [33, 34].
Conversely, methods of circadian intervention and

treatment have been developed, including the applica-
tion of light-based therapy for dementia-related patholo-
gies. For example, Alzheimer’s disease commonly results
in disturbances to circadian rhythms, leading to in-
creased deposition of the plaques that exacerbate Alzhei-
mer’s disease pathology. This in turn leads to further
dysregulation of the circadian clock, thus creating a posi-
tive feedback loop with negative effects on the pathology
and progression of Alzheimer’s disease. As a treatment
modality, optimized circadian entrainment lighting for
patients with Alzheimer’s disease has been implemented
in assisted living facilities and has been shown to im-
prove behavior, sleep, and mood [35]. In summary, the
circadian system has been shown to play an essential
role in organismal health and physiology, though many
questions still remain detailing its extensive reaches into
the cell.

Circadian output and conserved molecular oscillators
The general principles that govern the TTFL that or-
chestrates circadian rhythms are conserved in most
eukaryotic species, and fungal, insect, and mammalian
clocks all have some variation of the same basic clock
architecture (Fig. 1) [15, 23]. In the case of fungal and
animal clocks, the positive arm of the clocks consists of
a pair of heterodimeric transcription factors that drive
the translation of the negative arm proteins [36–38].
These negative arm complexes generally consist of sev-
eral proteins, including a core time-keeping protein(s),
stabilizers for that core protein(s), and kinases, which
temporally phosphorylate the core time-keeping
protein(s) (Fig. 1b). A conserved feature of the protein
complexes of the clock lies in their distinctive inter-
action mechanism. Uniquely, all clock proteins form
heterodimers that interact via a PAS domain [37, 39].
Phosphorylation of the clock time-keeping protein(s) de-
termines both the core time-keeping proteins’ repressive
activities on the positive arm, the half-life of the negative
arm, and the transcriptional activity of the positive-arm

proteins [9, 15, 16, 40]. The negative arm complex coa-
lesces in the cytoplasm before it migrates to the nucleus
to repress positive-arm activity, after which it is ubiquiti-
nated and targeted for degradation.
This transcriptional activity of positive arm/transcrip-

tion factor complexes extends beyond the promoter of the
core time-keeping protein and also regulates a host of
other promoters in the cell. The rhythmic transcriptional
activation on the promoters of these genes from the posi-
tive arm is believed to be the primary mechanism of out-
put. In addition, recent work in several eukaryotic species
has also shown that there is a great deal of post-transcrip-
tional regulation, for example rhythmic proteins arising
from non-rhythmic transcripts [22, 41–45]. This suggests
that the canonical TTFL control of output has several as
yet undiscovered levels of regulation.
While the conserved architecture of the TTFL has

allowed for significant investigations and discoveries to
be inferred across multiple circadian systems and the
basic molecular mechanism of the TTFL is appreciated,
many of the complex biophysical details that underlie
how these oscillators operate have yet to be determined.
A good example of this lies in the lack of sequence con-
servation of the negative arm of the circadian clock,
which is one of the reasons it has been difficult to dis-
cern the mechanism of action of the negative arm pro-
teins [46, 47]. However, while there is little sequence
conservation, one commonality in the negative arm pro-
teins of eukaryotic TTFLs is in the conservation of in-
trinsic disorder in negative arm proteins [48–50] (Fig. 2).
Intrinsically Disordered Proteins (IDPs) and Intrinsic-

ally Disordered Protein Regions (IDPRs) are amino acid
sequences that lack a fixed, three-dimensional, structure.
These IDPs and IDPRs exist instead in a heterogenous
ensemble of conformations and can be found ubiqui-
tously in macromolecular complexes [55]. In fact, pro-
tein disorder is known to play a role in many facets of
biology across the kingdoms of life and their conform-
ational plasticity confers a level of stochasticity and
tuneability to many biological systems, the import of
which we are only now beginning to appreciate [56]. In
the following discussion of intrinsic disorder in clock
proteins, to delineate the difference between an IDP and
an IDPR, we have chosen to use the IDP/IDPR classifica-
tion method suggested by Deiana et al. 2019 with slightly
modified naming [57]. To quantify the level of disorder,
four algorithms were used and averaged together. The
first three predictions are from the PONDR family
(VLXT, VL3-BA and VSL2) and the last is from
IUPred2A (long) [51–54, 58]. We classify proteins that
have more than 30% of their residues predicted to be dis-
ordered as IDPs. We classify proteins that have less than
30% of their residues predicted to be disordered but have
either a C or N-terminal disordered segment longer than

Pelham et al. Cell Communication and Signaling          (2020) 18:181 Page 3 of 13



Fig. 2 (See legend on next page.)
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30 consecutive residues, or a segment longer than 40 con-
secutive disordered residues in positions distinct from the
N and C-terminus, as proteins with IDPRs. Ordered pro-
teins (ORDPs) are classified as having less than 30% pre-
dicted disordered residues and no disorder predicted in
their C or N-terminal segments that are longer than 30
residues or non-terminal disordered regions longer than
40 residues.

Neurospora crassa as a circadian model organism
Model systems have long been a tenet of biological investi-
gation, allowing for the distillation of complexities for a
greater understanding of the problem at hand. Due to the
fact that the propensities of evolution have converged on ef-
ficiency mechanisms for timekeeping, we have, and can still,
learn much about the clock from tractable model systems.
One such circadian model, Neurospora crassa, a filamentous
fungus, has been a vital model organism across many disci-
plines of biology [59–61]. It originally gained notoriety as
the model organism used by Beadle and Tatum in their No-
bel prize winning mutant screens that yielded their one-
gene-one enzyme hypothesis. With both sexual and asexual
reproductive cycles and a fully sequenced genome, Neuros-
pora has continued to be an efficient system for use in gen-
etic and molecular research in many subdisciplines [62, 63].
In circadian biology, Neurospora has been used for over half
a century [11, 23, 64, 65]. The investigation for a molecular
explanation of a cellular oscillator began in Neurospora and
much of what has been learned about animal clocks was
first discovered by studying Neurospora. This includes many
of the biochemical activities assigned to clock proteins and
the first experimental evidence of negative feedback oscilla-
tions, which was demonstrated with the frequency gene
(reviewed in [49]). Neurospora continues to serve as an effi-
cient model organism for circadian characterization from
the molecular to “omics” scale [22, 48, 66–68].
Notably, Neurospora was the first organism in which

IDPs were demonstrated to play a role in the clock. Fur-
thermore, Neurospora makes extensive use of disordered
proteins and disordered regions as clock components
(Figs. 2 and 4). In fact, Neurospora possesses one of the
most disordered proteomes of all eukaryotic clock model
organisms. Intrinsic protein disorder is a proteome wide
phenomenon across all kingdoms of life and has been sug-
gested as an evolutionary mechanism of complexity [69,
70]. When enumerating long disordered regions of 30 res-
idues or longer, it was found that 23.9% of the Neurospora

proteome is classified as “long disorder”. Compared to
other clock model organisms, including Homo sapiens
(18.6% proteome-wide disorder), Mus musculus (17.4%
proteome-wide disorder), Drosophila melanogaster (19.8%
proteome-wide disorder), and Arabidopsis thaliana
(11.5% proteome-wide disorder), Neurospora has signifi-
cantly more protein disorder [71]. This increased propor-
tion of disorder is not specific to the fungal lineage, as
Saccharomyces cerevisiae demonstrates 14.6% proteome-
wide disorder [71]. As disorder is more prominent in the
Neurospora proteome, disorder is likely to play an en-
hanced role in the fungal clock, which possibly led to the
early recognition of extensive protein disorder in the clock
in Neurospora.

Conformational disorder in the negative arm of the
Neurospora clock
Residing at the heart of the circadian clock in Neurospora is
the negative-arm protein FREQUENCY (FRQ) (Fig. 1b and
2). FRQ and its interactors are the principal drivers of the
circadian period and, with the exception of a few small re-
gions, is predicted to be largely intrinsically disordered [48–
50, 72], with 85.5% of its sequence computationally present-
ing as disordered (Fig. 2) [54]. Further, FRQ was the first
protein to be biochemically verified to be an IDP within
any core clock [49, 50]. FRQ remains in solution after heat
treatment while its partner and nanny protein, the highly
ordered FRQ-interacting RNA Helicase (FRH), precipitates
out of solution [50]. This is important as heat-stability is
widely defined as a key indicator of IDPs as they are pre-
dicted to remain in solution after heat treatment while
globular proteins unfold, then misfold upon cooling, and
precipitate [73–77]. Another critical element supporting
the IDP nature of FRQ is the fact that IDPs including FRQ
commonly have “nanny” proteins that support and protect
them [50, 78]. Moreover, FRQ is more rapidly degraded by
treatment with proteinase K and Thermolysin than FRH,
another indication of an IDP nature, as tightly folded pro-
teins are able to inhibit protease cleavage by the protection
of protease target sites [48, 50]. Finally, an isoform of FRQ
without the first one hundred amino acids of the protein,
short-FRQ, was surveyed with Circular Dichroism (CD)
and demonstrated to have a mostly unstructured spectra,
with only a slight dip in the helical range, most likely due to
the only, small, predicted region of structure on FRQ, a
coiled coil-domain [49, 50, 79]. Though the role of FRQ as
a core clock constituent was defined over 25 years ago,

(See figure on previous page.)
Fig. 2 Computational Analysis Demonstrates Disorder in the Negative-Arm Constituents. Plots of the disordered propensity scores vs the primary
amino acid sequence of the negative-arm components from Murine, Neurospora, and Drosophila clocks. The propensity scores were calculated
using four algorithms, the first three from the PONDR family VLXT (red line), VL3-BA (green line) and VSL2 (purple line) and the last from IUPred2A
long (orange line). The mean is plotted as the blue line with the SD distribution shaded in light blue [51–54]. Any residue scoring 0.5 or higher in
the mean calculation was considered toward the percent disorder calculation
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much is lacking in the understanding of the molecular
function of FRQ in the circadian system as standard struc-
tural, mechanistic, and expression paradigms have failed,
presumably due to the significant level of disorder in FRQ
[48, 67].
IDP conformational regulation is heavily influenced by

phosphorylation, and conformational modulation via
post-translational modifications can facilitate the tunabil-
ity of both protein function and protein stability, which
has been detailed in many other systems [56, 80–83]. Im-
portantly, phosphorylation is an essential component of
circadian timing and circadian protein stability in the Neu-
rospora clock [50, 72, 80, 81, 83, 84]. FRQ is extensively
phosphorylated, over 100 times throughout the course of
the circadian day [84, 85]. Numerous FRQ phosphomu-
tants have been tested, yielding both lengthened and
shortened clock period phenotypes, reiterating the import-
ance of phosphorylation on clock regulation [11, 38, 84].
Interestingly, the patterning of FRQ phosphorylation ap-
pears to cluster around regions of disorder and the extent
of FRQ temporal phosphorylation could impose bulk elec-
trostatic effects [48, 81]. Moreover, this corresponds with
the increased coincidence of post-translational modifica-
tions occurring within disordered regions and the idea
that intrinsic disorder is important for phosphorylation
[86, 87]. Recent investigations into the IDP nature of FRQ
have demonstrated temporal conformational differences
through limited digestion, conformational changes which
are suggested to be induced by a repulsion of the N and
C-terminus induced by phosphorylation, exposing PEST
regions that may target FRQ for degradation [48, 72, 88].
Considering the asymmetric charge distribution of FRQ,
coupled with flexibility facilitated by the high degree of
disorder, this suggests that phosphorylation may be the
primary driver that allows FRQ to exhibit a high degree of
dynamic and temporal conformational plasticity [72].
Phosphorylation is also known to play a role in transmit-

ting signals between distinct regions in conformationally
flexible proteins to facilitate the potential for molecular al-
lostery to enhance interactions with biological partners [81,
89–91]. Moreover, the absence of structure in a protein
with numerous binding partners provides a thermodynamic
advantage, allowing specificity and affinity to be tuned for
many partners [83, 92, 93]. One mechanism thought to fa-
cilitate the “one-to-many” binding hypothesis are molecular
recognition features (MoRFs), short disordered amino acid
sequences 10–70 residues in length which act as the initial
molecular recognition step in binding [94]. MoRFs are sus-
pected to undergo a disorder to order transition upon bind-
ing and serve critical regulatory roles for interactions in
signal transduction and cell regulation [87]. PTMs are
known to occur in MoRF regions, which could suggest a
tunable and context dependent mechanism for binding and
regulation of these regions [87, 95].

Considering the combinatorial effect of the 100 phoso-
phosites identified on FRQ, the number of FRQ-phosphos-
tates reaches the realm of 2100, facilitating the potential for
an extensive level of regulation, in addition to the ascribed
static timekeeping function of FRQ. Recognizing that FRQ
and other disordered negative-arm proteins in eukaryotic
clocks act as the interaction hub for many clock proteins,
allosteric effects due to phosphorylations could impart a
level of circadian regulation via the temporal timing of cir-
cadian-interacting partners, which would confer a fine-tun-
ing method to the circadian protein-protein interaction
network [84, 96]. Importantly, this phosphorylation/con-
formation paradigm is mirrored in higher eukaryotes [97].
Extrapolating from FRQ and the Neurospora clock, this
suggests that phosphorylation of IDPs is a primary timing
mechanism for core circadian clock protein-protein interac-
tions [98].
FRQ is expressed as two isoforms, a long form (L-FRQ,

a.a. 1–989) and a short form (S-FRQ, aa 100–989) which is
missing the first 99 residues [99]. Both isoforms generate
robust rhythms but the ratio of expressed isoforms varies
as a result of temperature mediated alternative splicing and
impacts the clock’s temperature response [100]. At lower
temperatures, there is a decrease in the amount of L-FRQ.
As temperatures rise, the ratio skews in favor of L-FRQ,
with very low amounts of S-FRQ remaining at the 30 °C
range [101]. An emerging theme in the regulation and be-
havior of IDPs and IDRs is the correlation and cooperativity
of disorder with alternative splicing and post translational
modifications, known as the IDP-AS-PTM tool kit for sig-
naling diversification [102–105]. With numerous examples
across the eukaryotic kingdom, it has been suggested that
this tool kit allows for versatility and the ability to accom-
plish dynamic regulatory function with the capacity to re-
spond to changing environments [105]. The disordered
nature of the first 100 aa of FRQ, its context dependent
splicing and expression, and the approximate 15 phospho-
sites in this region, suggests that circadian regulation in the
N-terminus of L-FRQ follows the IDP-AS-PTM paradigm.
Moreover, the synergism of the IDP-AS-PTM tool kit is
conserved in the clocks of higher eukaryotes [105].
Disorder in the Neurospora clock exists beyond FRQ.

Once the positive arm triggers the transcription and
translation of FRQ, FRQ dimerizes and immediately binds
with its chaperone/nanny protein FRH, forming the FRQ-
FRH Complex (FFC) [50, 106, 107]. FRH is an orthologue
of the yeast TRAMP complex member Mtr4 [50]. Mtr4 ac-
tivates the nuclear RNA exosome and regulates RNA me-
tabolism with a preference for poly-adenylated mRNA
[108, 109]. FRH is essential for both survival and clock
functionality in Neurospora, though these functions are not
synonymous [50, 106]. Binding between FRQ and FRH is
imperative for FRQ localization, proper phosphorylation,
and stability [50, 107, 110]. Though FRH has been
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structurally characterized to be highly ordered, it has a sig-
nificantly disordered N-terminus (169 residues) with 25.7%
of its entire sequence predicted to be disordered (Fig. 2)
[50, 108]. This disordered N-terminal region is key to the
binding between FRQ and FRH and deletions within this
region cause arrhythmicity [50]. Binding with FRQ was
demonstrated to occur between amino acids 100–150 in
FRH, and mutants within this region cause a clock period
change as well as a change in affinity for the positive arm of
the Neurospora clock, the White-Collar Complex (WCC)
[50, 111]. Of note, the FRHV142G mutant showed the great-
est change to the complex and clock period, weakening the
interaction between FRH, FRQ and the WCC, and yielding
a 18.7 h period (~ 21.5 h WT) [111]. Relevantly, this disor-
dered N-terminal region in FRH is not present in Mtr4 or
other orthologues from fungal species that do not maintain
an orthologue of FRQ, suggesting it evolved specifically to
function in circadian regulation. IDP/IDPR interactions are
common, often driven by opposing charge distributions,
and do not necessarily lead to a loss of conformational het-
erogeneity in the binding partners [112–115]. Considering
the positive charge distribution of FRQ and the negative
charge of the disordered FRH N-terminus, this is a tantaliz-
ing mechanism to consider for the modulation of the inter-
action between the negative arm Neurospora clock
proteins.

Conformational disorder in the negative arm in other
eukaryotic clocks
IDPs are conserved in the negative arm beyond the Neu-
rospora clock. In mammals, as well as in Drosophila, the
core negative arm proteins are the PERIODs (PERs) and
these proteins are functional analogs of FRQ (Fig. 1b)
[50, 83]. As with FRQ, computational analysis of dis-
order in the PERs, including human (hPER1, 2, and 3),
murine (mPER1, 2, and 3), and Drosophila (dPER), indi-
cates that the PERs are IDPs, with mPER2 and dPER at
66.2 and 70.2% predicted sequence disorder respectively
(Fig. 2) [48, 83]. Furthermore, like its counterpart FRQ,
we have shown that mPER2 extracted from murine liver
cells remains in solution after heat treatment (Fig. 3)
using the same approach as we used on FRQ. This dem-
onstrates that mPER2 also displays some of the classical
biochemical characteristics of an IDP [73–77].
In parallel with the IDP conservation between FRQ

and the PERs, dPER and mPER have been shown to be
highly temporally phosphorylated and the temporal
phosphorylation of the PERs is known to serve many
regulatory roles, including localization, transcriptional
repressor potency, temperature compensation, and pro-
tein stability [83, 97, 116]. Limited proteolysis of dPER
also demonstrated that hyperphosphorylated dPER has a
more open conformation, potentially allowing it to be
more readily accessible for targeted degradation [117]. It

has also been suggested that mPER2, like FRQ, may be
supported by a nanny helicase [50]. mPER2 complexes
with two DEXD-box helicases, DDX5 (DEAD-box pro-
tein 5) and DHX9 (DEAH-box protein 9). Deletion of ei-
ther results in a shortened period and increased rates of
mPER2 transcription, both predictable outcomes if these
DEXD-box helicases played a role in PER stability as FRH
does for FRQ [50, 118]. Along these lines, mPER2 and
hPER2 have been demonstrated to have a multitude of
interacting partners that serve to regulate clock function
[96, 118, 119]. It is known that a high level of protein-inter-
action promiscuity is a common feature for IDPs, as they
often serve as hub nodes in protein interaction networks
[120–124]. Considering the conservation of the aforemen-
tioned characteristics between FRQ and PER, this bolsters
the idea of a critical need for intrinsic disorder in clock pro-
teins such that they can serve as flexible interaction hubs.
Beyond PER, higher eukaryotes have several additional

components that serve critical roles in the negative arm
complex that also have large regions of intrinsic disorder,
including Cryptochrome 1 (CRY1) [83, 125–127]. Compu-
tationally, mCRY1 is an IDPR displaying 21.6% sequence
disorder (Fig. 2). CRY1 contains a significantly disordered
C-terminal tail (~ 100 aa in hCRY1 and ~ 200aa in A.
thaliana CRY1) (Fig. 2) [126]. The mCRY1 C-terminal tail
was further defined as disordered via CD and Analytical
Ultracentrifugation (AUC) [128]. Modification or trunca-
tion of the mCRY1 tail alters the period as well as the
amplitude of the rhythms [129–133]. As with disordered
regions in FRQ and PER, the C-terminal disordered tail of
CRY1 is temporally phosphorylated (8 confirmed

Fig. 3 Heat treatment of mPER2 demonstrates that mPER2 has the
biochemical characteristics of an IDP. To demonstrate that mPER2
remained soluble after heat stability, murine liver lysates were subjected
to heat treatment (ΔH: 100 °C for 10min) with a mock treatment on ice
in parallel. Centrifugation was used to separate the soluble fraction from
the aggregated proteins. For western blot visualization, 10 μg of total
protein was loaded per lane for all treatments, with the Santa Cruz Per-2
H-90 (sc-25,363) antibody used for detection
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phosphosites in the tail region) and is critical for regulat-
ing circadian period and amplitude [98, 130, 134]. The
mCRY1 tail interacts with the N-terminal photolyase
homology region (PHR) domain on mCRY1, and it is sug-
gested that this auto-interaction is essential for proper cir-
cadian timing [127]. This binding is believed to be
involved in a time-of-day specific competitive interaction
between mCRY and either the CLOCK/BMAL1 complex
or PER2 [127]. Interestingly, the binding between PER2
and CRY1 is via an intrinsically disordered CRY1-binding
domain on PER2, mirroring the IDP/IDPR interaction of
FRQ and FRH [50, 127].
Moreover, the C-terminal CRY1 tail is produced from

the splicing of 3 exons, exons 10, 11, and 12. In humans, it
has been shown that an adenine-to-cytosine transversion
in exon 11 results in exon skipping, creating the hCry1 Δ
11 allele. This hCry1 Δ 11 allele results in the lengthening
of the clock period, increased hCRY1 nuclear localization,
and an enhanced interaction with higher eukaryote posi-
tive-arm clock proteins, hCLOCK and hBMAL1. The ef-
fects of this mutation in hCRY1 resulted in an established
case of human delayed phase sleep disorder, demonstrat-
ing the physiological importance in the proper functioning
of the disordered regions of clock proteins [129].
The IDP-AS-PTM tool kit also extends to the negative

arm of higher eukaryotic clocks. The negative arm of D.
melanogaster is predicted to be disordered, with dPER
and TIM at 70.2 and 42% respectively (Figs. 1 and 2). Al-
ternative splicing results in the expression of 7 isoforms
of tim. At the protein level, TIM has been found
expressed in 4 of those isoforms and the isoform ratios
are environmentally dependent and, like Neurospora, are
suspected to play a role in the temperature response of
the clock [135]. Furthermore, TIM and dPER heterodi-
merize and repress their expression in the nucleus [136–
141]. Finally, the temporal phosphorylation of dPER and
TIM, which is essential for regulating period length, ful-
fills the remaining qualification of the IDP-AS-PTM in
the Drosophila clock [137, 142–144]. Moreover, splicing
machinery and numerous kinases and other post-transla-
tionally modifying enzymes are under circadian regula-
tion in N. crassa, D. melanogaster and M. musculus [19,
145–147]. The circadian timing of these processes likely
extends circadian regulation using the AS-IDP-PTM tool
kit to a meta scale in the cell.

Conformational disorder in the positive arm of the clock
In addition to the disorder in the negative arm, the posi-
tive arm proteins of fungi and animals, which do share
some sequence conservation, also have significant con-
servation of protein disorder (Fig. 4) [47]. As evidence is
emerging that the majority of eukaryotic transcription
factors are IDPs, with nearly two thirds of their sequence
predicted to be disordered, it is logical the importance of

disorder extends to the transcriptional activators of the
positive arm of the clock [69, 103, 148–152].
In Neurospora, the heterodimer complex of the positive

arm is comprised of White Collar-1 (WC-1) and White
Collar-2 (WC-2), together known as the White Collar
Complex (WCC) (Fig. 1b) [153]. Computationally, WC-1
and WC-2 are considered IDPs, with 62.1 and 70% of their
respective sequences computationally classified as disor-
dered (Fig. 4). Like FRQ, the WCC is highly phosphory-
lated, with 80 phosphosites mapped on WC-1 and 15
phosphosites mapped on WC-2 [66]. Also similar to FRQ,
the phosphosites cluster in regions of disorder and these re-
gional clusters of phosphosites play a role in the circadian
feed-back loop, implying that conformational flexibility and
plasticity is important for rhythmic core clock activity and
output in both the positive and negative arms [66].
FRQ interacts with the WCC and appears to recruit ki-

nases to impart WCC phosphorylation to repress WCC
transcriptional activity, which is critical for proper circa-
dian timing [66, 84, 154]. The interaction between FRQ
and the WCC occurs within the Defective in Binding
DNA domain on WC-1 (DBD) [155]. This region, albeit
small, is also disordered, demonstrating a further point of
evidence for disorder regulating the interaction of the core
proteins of the clock and further supporting the role of in-
trinsic disorder in circadian regulation.
In higher eukaryotes, the constituents of the positive arm

complex include the transcription factors CLOCK and
BMAL1. Several regions of the proteins in this complex
have been demonstrated to be disordered and computa-
tional analysis shows overall that mBMAL1 is predicted to
be 53.2% intrinsically disordered while mCLOCK is pre-
dicted to be 59.6% intrinsically disordered (Fig. 4) [128]. As
in lower eukaryotes, disorder has been characterized as an
essential element in the interaction between the positive
and negative arm proteins of the clock, and changes in
these disordered regions play a role in the regulation of
BMAL1 and CLOCK activity [83, 156–161]. More specific-
ally, the C-terminal trans-activation domain (TAD) on
BMAL1 was demonstrated by chemical shift dispersion to
be an intrinsically disordered region and CRY1 competes
for binding on this TAD region, binding which serves as a
functional switch to activate/inactivate CLOCK/BMAL
transcriptional activity [125]. “Locking” this Trp-Pro isom-
erization switch in the TAD of BMAL1 lengthens the circa-
dian period, highlighting how conformational dynamics
play a key role in circadian period determination, parallel to
what has been suggested in Neurospora [48, 72, 125, 162].
The occurrence of low complexity prion-like domains

(PrLDs), specifically Poly-Q regions, in the positive arm
clock proteins from lower to higher eukaryotes [163–165],
including Arabidopsis [166, 167], have been shown to play
a role in period and phase regulation, and have an un-
defined mechanism. Considering the fact that Poly-Q
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regions are known to play a role in phase separation [168]
at the transcript level, it has not escaped our notice that
biomolecular condensation or phase separating behavior
may play a role in the regulation of the clock. This could
provide the capacity for numerous regulatory roles; from
pre-transcription and the coordination of gene expression,
to post-transcriptional regulation. Phase separation under-
scored by low complexity prion like domains (poly-Qs)
have recently been demonstrated as a mechanism of tran-
scriptional factor regime control in the fungi C. albicans
in its phenotypic pathogenicity switch process [169]. Inter-
estingly, another phase separation phenomena, the forma-
tion of P-bodies, has been demonstrated to be under
circadian clock control [170]. P-bodies, or processing bod-
ies, are widely conserved foci within the cell that are
formed by phase separation [171]. These biomolecular
condensates house many enzymes that are involved with
mRNA turnover, including DDX proteins, and have also
been demonstrated to store mRNA prior to translation.
Of note, over half of the proteins identified in a screen of

the components in P-bodies are DDX proteins and their
interacting partners [172] making the this, and aforemen-
tioned ideas, alluring avenues for the explanation of po-
tential mechanisms of circadian pre and post-
transcriptional regulation.

Conclusions
IDPs have been suggested to serve important roles in
finely tuning the circadian regulatory circuit through
post-transcriptional regulation, multiple interacting part-
ners, and many other mechanisms. We have discussed
examples of disorder in the clock and how they underlie
the mechanisms for several of the phenomena in the cir-
cadian system from timing, to the regulation of output,
to providing the capacity for the clock to respond to cel-
lular conditions. Considering the complexity and deep
reaches of the molecular circadian circuit, disorder pre-
sents an essential and inherent mechanism of biological
control, supported by the conservation of protein dis-
order in clocks from lower to higher eukaryotes.

Fig. 4 Computational Analysis Demonstrates Disorder in the Positive-Arm Constituents. Plots of the disordered propensity scores vs the primary
amino acid sequence of the negative-arm components from murine, Neurospora, and Drosophila clocks. The propensity scores were calculated
using four algorithms, the first three from the PONDR family VLXT (red line), VL3-BA (green line) and VSL2 (purple line) and the last from IUPred2A
long (orange line). The mean is plotted as the blue line with the SD distribution shaded in light blue. Any residue scoring 0.5 or higher in the
mean calculation was considered toward the percent disorder calculation
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