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Abstract 

Septins are a family of cytokinesis-related proteins involved in regulating cytoskeletal design, cell morphology, 
and tissue morphogenesis. Apart from cytokinesis, as a fourth component of cytoskeleton, septins aid in forming 
scaffolds, vesicle sorting and membrane stability. They are also known to be involved in the regulation of intracellular 
calcium  (Ca2+) via the STIM/Orai complex. Infertility affects ~ 15% of couples globally, while male infertility affects ~ 7% 
of men. Global pregnancy and live birth rates following fertility treatment remain relatively low, while there has been 
an observable decline in male fertility parameters over the past 60 years. Low fertility treatment success can be attrib-
uted to poor embryonic development, poor sperm parameters and fertilisation defects. While studies from the past 
few years have provided evidence for the role of septins in fertility related processes, the functional role of septins 
and its related complexes in cellular processes such as oocyte activation, fertilization, and sperm maturation are 
not completely understood. This review summarizes the available knowledge on the role of septins in spermatogen-
esis and oocyte activation via  Ca2+ regulation, and cytoskeletal dynamics throughout pre-implantation embryonic 
development. We aim to identify the currently less known mechanisms by which septins regulate these immensely 
important mechanisms with a view of identifying areas of investigation that would benefit our understanding of cell 
and reproductive biology, but also provide potential avenues to improve current methods of fertility treatment.
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Introduction
Infertility affects ~ 15% of couples globally, while 
male infertility affects ~ 7% of men [42]. While known 
genetic causes can be attributed to ~ 30% of infertil-
ity cases, ~ 50% of male factor infertility cases remain 
unexplained [31]. However, while assisted reproduc-
tive technology (ART; a suite of laboratory techniques 
used to combat cases of infertility) can remedy infer-
tility, this seems only possible only following multiple 
cycles of fertility treatment. Global pregnancy and live 
birth rates following ART remain relatively low, rarely 
exceeding 22% per cycle [89]. Furthermore, there seems 
to be a decline in male fertility parameters by as much 
as 50–60% in western countries over the past 60 years 

*Correspondence:
Junaid Kashir
junaid.kashir@ku.ac.ae
Hamdan Hamdan
hamdan.hamdan@ku.ac.ae
1 College of Medicine and Health Sciences, Khalifa University, Abu 
Dhabi 127788, United Arab Emirates
2 Department of Biological Sciences, College of Medicine and Health 
Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
3 Center for Biotechnology, Khalifa University, 127788 Abu Dhabi, United 
Arab Emirates

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12964-024-01889-z&domain=pdf


Page 2 of 14Al‑Ali et al. Cell Communication and Signaling          (2024) 22:523 

[59]. Another contributing factor to such low success 
rates is also attributed to poor embryonic development 
or competency following fertility treatment [8, 40]. 
While poor embryogenesis can be attributed to poor 
sperm parameters [54, 68], another leading cause seems 
to be attributed to the early dynamics of pre-implanta-
tion embryogenesis, with fertilisation defects seemingly 
underlying poor quality of embryogenesis in the fertil-
ity clinic.

Wong et al. [110] suggested that the dynamics of cell 
division in zygotic/preimplantation embryo develop-
ment was predictive of embryo quality in humans. Sub-
sequently, examination of embryonic morphokinetic 
parameters have become a well-accepted measure of 
embryo quality and ultimately successful pregnancy 
and birth [16, 37]. Indeed, embryos exhibiting cellular 
dynamics beyond recommended ranges are thought to 
represent suboptimal cytoplasm/nuclear machinery, 
with Yang et  al. [111] suggesting that earlier occur-
ring irregularities in processes influencing fertilisation 
and pre-implantation embryogenesis exerting greater 
impact upon embryogenic efficacy, with ideal mor-
phokinetic parameters indicating embryos that are able 
to arise from an undisturbed/ideal cell cycle progres-
sion, dependent upon embryonic cytoskeletal param-
eters [72].

Actin filaments, microtubules, and intermediate fila-
ments are considered the main components of the cell 
cytoskeleton. However, 50 years ago, a fourth vital com-
ponent of the eukaryotic cytoskeleton was discovered 
for the first time in yeast – subsequently named Septins 
[36]. This group of proteins plays an essential role in cel-
lular structure and assembly, with currently 13 identified 
Septin genes in humans that engage with the actin and 
microtubule cytoskeleton along with membranes [74]. 
These proteins have been exhaustively studied, and they 
have been observed in different organisms apart from 
humans, including Schistosoma, Chlamydomonas, and S. 
cerevisiae. They are mostly referred to as the fourth com-
ponent of the cytoskeleton due to their significant role 
in maintaining the cell’s structural integrity. Septins are 
generally classified as small GTP-binding proteins with a 
molecular weight of 30–65 kDa, belonging to the phos-
phate-binding loop (P-loop) NTPases. Different domains 
have been recognized to play a critical role in facilitating 
the organization and function of Septins and the resulting 
complex structures [74]. These proteins consist of four 
structural components: a variable N-terminal region, a 
polybasic region for phospholipid binding, which allows 
the septin to interact directly with the phosphoinositides 
found on the plasma membrane, a conserved GTP-bind-
ing domain, and a predicted coiled-coil domain in the 
C-termini [10, 29, 82].

The septin family of proteins
Understanding the physiological role of septins in cellular 
processes necessitates understanding the septins’ struc-
ture and their organization into high-order structures. In 
human cells, septins assemble and form a diverse set of 
complex and higher-order structures. Evidence suggests 
that contrary to RAS-like GTP-binding proteins, sep-
tins exist as either hetero-hexamers or hetero-octamers 
facilitated by the interaction between their GTP-binding 
domains and the N-terminal and C-terminal regions [74]. 
Mainly, it is the nucleotide binding and the GTP hydroly-
sis that govern and modulate the septin-septin interac-
tion, except in the case of SEPT6 group septins, which 
are persistently bound to GTP and lack the hydrolysis 
capacity due to the absence of an essential Threonine res-
idue – Thr78 [93].

The 13 septins found in humans can be categorized 
into four groups according to their phylogenetic analy-
sis, named after their most extensively studied members: 
SEPT2 (comprising SEPT1, SEPT4, and SEPT5), SEPT3 
(including SEPT9 and SEPT12), SEPT6 (including SEPT8, 
SEPT10, SEPT11, and SEPT14), and SEPT7, which stands 
alone in its group (Fig.  1). The number of mammalian 
septins is further expanded by the expression of iso-
forms, and these increase the diversity of septin filaments 
and may alter their functions in different tissues and cell 
types [20]. A striking property of septin complexes is 
their capacity to form non-polar filaments, making them 
highly stable cytoskeletal elements when compared to the 
dynamic actin filaments and microtubules. In addition, 
they can interact laterally, forming bundles, which are 
recognized as the biologically active form of septins [94] 
(Fig.  2).Various factors were identified as regulators of 
the assembly and disassembly of the septin filaments. As 
mentioned previously, septin filaments can interact with 
membrane phospholipids, and both can influence the 
behavior of the other. As such, the septin can modulate 
the shape of the phospholipid membrane, while simulta-
neously, the phospholipids can control the formation of 
the septin filaments. Other discovered regulators of the 
septin filaments formation and disassembly include post-
translational modifications such as phosphorylation, 
sumoylation, and ubiquitylation [74].

Functions of septins
Septins are categorized as a eukaryotic cytoskeleton 
component based on their role in different cytoskeletal-
related functions. One of the leading roles of highly com-
plex septin formations is serving as a scaffold, recruiting 
other proteins, and facilitating their functions. This 
can be demonstrated in budding yeasts, where septin 
filaments can arrange into an hourglass structure that 
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enables the arrangement of vital cytokinesis proteins into 
the division site. Similar structures have also been appre-
ciated in mammalian cells [10, 34, 74, 81].

Septins also play vital roles in cell division, influencing 
chromosomal movement and spindle elongation, par-
ticularly at the mitotic midplane. They interact with the 
microtubule-dependent motor protein and centromere-
associated protein E [113]. Additionally, septins act as 
a base, ensuring proper membrane rigidity and regulat-
ing cell shape and movement. Septins also play a role 
in the motility of T cells, which are intricately linked 
to the development of their navigation system. Studies 
have demonstrated that SEPT7 is crucial for properly 
developing these components. Its absence from lympho-
cytes leads to alterations in the uropod’s structure, caus-
ing elongation and impacting the cell’s ability to sustain 
motility [20]. Depletion of SEPT7 disrupts the persistent 
motility of T cells, allowing them to pass through narrow 
pores due to loss of membrane rigidity [74, 101].

Another significant physiological function of septins 
is forming diffusion barriers, which are essential in var-
ious cellular processes. Although their role in forming 
similar barriers during cell division is not fully proven, 
studies emphasize their significance in non-dividing 
cells [74]. Notably, septins form a diffusion barrier at 
the base of cilia, which are hair-like projections with 
diverse functions. For instance, SEPT2 is known to 
confine and stabilize a complex of proteins known as a 
ciliopathy complex at the base of the cilium and main-
tain tubulin glutamylation. Any modifications imped-
ing this process are associated with a ciliopathy known 

Fig. 1  Schematic description of septin domain structure, summarising septin groups and their binding partners. All septins share a conserved 
GTP-binding domain, a phosphoinosite-binding polybasic region (PB), and a septin unique element (SUE). The length and amino acid sequences 
of the N- and C-terminal extensions (NTE and CTE, respectively) vary between septin groups. Figure adapted from [77]

Fig. 2 A schematic description of the structure of the complex 
formed between septins using SEPT2-SEPT6-SEPT7 as an example. 
Two copies of each septin are arranged symmetirically (SEPT7-6–
2-2–6-7), generating a hexamer by alternating N- and C-termini 
(NC) and G-interface (GTP-binding domain) with individual septins 
exhibiting binding preference to other septins defined by the septin 
subgroup. Figure adapted from [77]
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as Joubert syndrome [15, 58, 74, 95]. In the context of 
renal epithelia, the primary cilium acts as a fluid flow 
sensor in the nephron. Research indicates that the 
absence of SEPT2 disrupts cilium morphology, caus-
ing a shorter cilium. This disturbance further results in 
the dislocation of ciliary membrane proteins, impacting 
signal transduction and specialized cilium functions. 
Findings have also suggested that other septins, such as 
SEPT7 and SEPT9, also interact with microtubules in 
the cilium, influencing its length [20].

A major septin in the annulus of the sperm is SEPT4, 
which, if knocked out, causes the protein compart-
mentalization to be lost and the sperm motility and 
morphology to be compromised, leading to sterility, 
as proven by SEPT4-knockout mice experiments [41]. 
Septins can also facilitate the growth of actin fila-
ments on the microtubule mesh by directly interacting 
with both structures. This process is vital for develop-
ing and dynamics of growth cones, essential neuronal 
protrusions guiding axonal growth [76]. Furthermore, 
embryological studies involving the in  vivo knock-
out of SEPT4 and SEPT14 revealed an interruption in 
the migration process, with neurons halting at earlier 
stages (ventricular and intermediate zones) and con-
sequently failing to reach their intended destination, 
the cortical plate of the developing cortex [20]. Dys-
regulation in septin genes has been linked to neurode-
generative disorders such as Alzheimer’s disease (AD), 
characterized by altered neuronal morphology and 
function [71]. Patients with AD had changed protein 
levels of various septins. This indicates that septins may 
also be early indicators of synaptic malfunction and 
synaptotoxicity [71].

In addition, it was demonstrated that septins regu-
late microtubule-dependent transport by controlling 
the movement of specific motor proteins and the cargo 
they carry. Septin also seemingly directly controls the 
motility of the kinesin motor protein [96, 97]. One study 
evaluated how SEPT9 affected kinesin-1/KIF5 and kine-
sin-3/KIF1A. The kinesin-1/KIF5 motion was improved, 
and the kinesin-3/KIF1A motion was hindered when 
the septin level was decreased. Conversely, overexpres-
sion of SEPT9 resulted in an opposite effect [96]. In an 
in vitro experiment, a group of researchers examined the 
physical interaction between septins and plus-end track-
ing protein-1 (EB1), a prominent regulator of microtu-
bule mobility, to investigate the unique structure in the 
cytoskeletal network linked with septins. The study dem-
onstrated the strong bonding strength between EB1 and 
SEPT2, SEPT6, and SEPT7, as shown by the published 
equilibrium dissociation constant studies, conclud-
ing that septins primarily control microtubules through 
communication with EB1 proteins [78].

Involvement of septins in the cytoskeleton 
and cytoskeletal dynamics
Septins have risen as critical players in maintaining 
cytoskeletal design, controlling cell shape, and planning 
different cellular functions. This is done by framing fila-
mentous structures related to other cytoskeletal compo-
nents, such as actin fibers and microtubules [50]. Septins 
assemble into complexes and polymers that are more 
stable than microtubules and actin filaments as they are 
nonpolar and lack the polarity aspect [4]. The assem-
bly and preservation of actomyosin networks is evident 
by their interaction with Septins at specific regions of 
the cytoplasm and plasma membrane [97]. Experiments 
involving the reconstitution of biological processes in a 
controlled environment outside living organisms have 
demonstrated the direct interaction between insect sep-
tins (specifically Drosophila Septin 1–Septin 2–Pnut) and 
mammalian Septins (human SEPT2 – SEPT6 – SEPT7 
and SEPT9) with both actively forming and pre-assem-
bled actin filaments. This interaction leads to the creation 
of various structural configurations, including curved, 
circular, and linear bundles.

Septins have been found to link with actin fibers at the 
cell cortex, contributing to the arrangement of actin-
based structures just like the cortical cytoskeleton. They 
interact with actin-binding proteins and signaling effec-
tors to provide feedback regulation, which allows them 
to control actomyosin organization and contractility [97]. 
Therefore, septins contribute to the mechanical solidness 
and organization of the cytoskeleton. Moreover, a pivotal 
function of septins is to control the cell shape and main-
tain its cellular integrity [51]. Septin fibers, composed 
of GTP-binding proteins, can gather into higher-order 
structures within particular cell regions [6]. These higher-
order structures can take the shape of rings or gauze-like 
meshwork that encompass certain cellular areas. Examin-
ing the organization and creation of septins in different 
cellular settings revealed that septins frame intricate fila-
mentous structures acting as a stage, providing essential 
support in shaping the cell [5]. Septins commonly inter-
act with actin stress fibers by either directly engaging or 
via the facilitation of actin-binding proteins. The thinning 
of actin stress fiber is triggered by the depletion or relo-
calization of septin.

Septins engage with actin on fungal cell membranes 
through an indirect interaction facilitated by myosin 
II. This connection is established through the myosin-
binding factor Bni540–43. Additionally, septins interact 
with actin through protein complexes that include the 
formin Bnr1, as well as Bin/amphiphysin/Rvs domain 
and ezrin/radixin/moesin family proteins [97]. In addi-
tion to the interaction of septins with actinomycins, 
evidence revealed that myosin, which plays a role in 
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muscle contraction, also contributes to septin-mediated 
cytoskeletal elements [109]. Despite their leading role in 
muscle cells, myosin is also associated with assisting sep-
tins in regulating necessary cellular forms like cell motil-
ity, cytokinesis, and tissue morphogenesis.

In addition to actin and myosin, intermediate fibers 
are critical players within the cytoskeletal framework, 
contributing to the mechanical quality of cells [84]. They 
frame an assorted family of proteins, counting keratins, 
vimentin, neurofilaments, and lamins, each with capaci-
ties in distinctive cell types and tissues. Unlike actin 
fibers, intermediate filaments are more steady and less 
energetic. Intermediate fibers are found in different cel-
lular compartments, including the cytoplasm, core, and 
cell–cell intersections, playing a significant role in main-
taining cell shape, resisting mechanical stretch, and sup-
porting cellular structures. For example, in epithelial 
cells, intermediate fibers called keratins help shape and 
arrange the cytoplasm. The affiliation of septin fibers 
with intermediate filaments provides a link between the 
cytoskeleton and cell–cell intersections. This connection 
is pivotal for supporting the tissues and the appropri-
ate functioning of epithelial layers, permitting septins to 
participate in cell attachment, cell migration, and tissue 
morphogenesis forms, where intermediate filaments are 
known to play a vital role [30]. To this degree, given the 
increasing evidence of association of the septin family of 
proteins with actin, myosin and numerous intermediate 
filaments, multiple avenues of investigation have begun 
to find associations between this family of proteins and 
specific cell types involved in reproduction, mainly in 
spermatogenesis.

Septins at spermatogenesis
Spermatogenesis is the process whereby the male gamete 
called sperm is produced, involving mitotic, meiotic, and 
spermiogenesis (physical transformation) phases. The 
entirety of mammalian spermatogenesis unfolds through 
12 distinct stages within the seminiferous tubules of 
the testes, with spermiogenesis involving the formation 
of the sperm annulus within spermatids. This process 
begins when the annulus accumulates at the lower end 
of the nucleus in stage I spermatids, and gradually moves 
down the sperm tail finally reaching the junction between 
the midpiece and principal piece [92]. Male infertility can 
result from various factors, including problematic sperm 
production, hormonal imbalances, immune system defi-
cits, ejaculation dysfunction, environmental exposures, 
and genetic mutations [64]. Within germ cells, structures 
called intercellular bridges undergo a transformation into 
a stable form, which is crucial for fertility. The role of 
septins in these intercellular bridges seems to be consist-
ent across different species. In Drosophila, three septins 

(Pnut, septin1, and septin2) create a structure between 
the intercellular bridge of male and female germ cells. 
Similarly in mice, SEPT2, SEPT7, and SEPT9 are located 
within the intercellular bridge in male germ cells. Loss of 
this septin-containing bridge increased germ cell death 
[63, 64], suggesting an important role for septins within 
spermatogenesis [62].

Septins can also affect flagellar proteins, which are 
important for generating energy in the annular region. 
Their ring-like structure provides a circular force that 
helps propel sperm forward in the female reproduc-
tive tract. As a primary cytoskeletal protein, septins are 
remarkable at forming filaments, impairment of which 
in mice led to the production of immotile sperm, hinder-
ing natural conception [106]. However, the core structure 
and mechanism of septin-related complexes in sperm 
are still unknown and require further investigation [63]. 
SEPT4 is a vital part of the annulus, with mice exhibiting 
a SEPT4-null mutation exhibiting significantly impaired 
ability to reproduce [41, 64]. The absence of SEPT4 
resulted in annulus defects, leading to immotile sperm 
due to defective tails [41, 53, 102], perhaps due to the 
requirement of the annulus/SEPT4 ring in organizing the 
fibrous sheath of the annulus [41].

SEPT12 forms filament-like structures in isolated 
mouse germ cells, while in fully-developed sperm cells, 
SEPT12 is detectable in the head, neck, and midpiece, 
with minimal amounts in the tail [62–64]. Sperm samples 
from humans with conditions like hypospermatogen-
esis, maturation arrest, and asthenozoospermia showed 
decreased SEPT12. Chimeric male mice with no SEPT12 
exhibited lower testis weights, sperm counts, and sperm 
motility than those with functional SEPT12. Some mice 
displayed abnormalities in the seminiferous epithelium, 
mirroring the hypospermatogenesis-like phenotype 
observed in humans [64]. Although the impact on repro-
duction is significantly great when there isa deficiency 
in SEPT4, even only haploinsufficiency of SEPT12 can 
lead to severe abnormalities in both mature and imma-
ture germ cells during spermiogenesis in mice [64]. 
Indeed, Kuo et  al. [57] identified two novel mutations 
from separate infertile patients in the GTPase domain 
of SEPT12 that although heterozygous, were suggested 
to alter the protein structure, with one mutation reduc-
ing GTP hydrolytic activity, with the other interfering 
with GTP binding. Interestingly, both patients with these 
mutations exhibited abnormal sperm motility and mor-
phology (oligoasthenozoosperma and asthenoterato-
zoospermia). However, it should be noted that this was 
observed in only 2 patients from a total of 160 infertile 
patients screened, suggesting such occurences are rela-
tively rare. However, this is not to say that there were no 
septin defects in these patients as only patient DNA was 
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examined for SEPT12 rather than protein levels in sperm. 
It would be worth examining other septin genes from 
such patients and/or examining sperm septin protein lev-
els in relation to sperm parameters and other important 
sperm conditions.

A good example of such an uninvestigated relation-
ship in sperm is association of septins with sperm DNA 
fragmentation (SDF). SDF is increasingly considered a 
leading cause underlying male infertility and subfertil-
ity, with elevated sperm DNA fragmentation associated 
with lower chances of successful natural conception and 
increased chances of recurrent pregnancy loss. SDF is 
also associated with increased miscarriage and lower 
pregnancy rates following fertility treatment [2]. Inter-
estingly, Kremer et  al. [56] identified that the SEPT2-
SEPT6-SEPT7 complex is involved in DNA damage 
repair pathways via nuclear NCK, with knockdown of 
the SEPT2-SEPT6-SEPT7 complex resulting in increased 
DNA fragmentation in such cells [52]. Concurrently, 
Hara et  al. [35] indicated that depletion of SEPT8 in 
murine retina photoreceptor cells was concomitant with 
increased nuclear DNA fragmentation. However, given 
such well characterised links between septins and sperm 
defects, and septins and DNA fragmentation, such cor-
relations in human sperm.

SEPT14, a relatively recent addition to the septin fam-
ily, interacts with SEPT9 in human testes [63, 103], exhib-
iting colocalization within the testes. Two heterozygous 
missense mutations in the coding region of SEPT14 

corresponded to abnormal head morphology. In fertile 
men with non-obstructive azoospermia, an incurable dis-
order linked to spermatogenic failure, SEPT14 was evalu-
ated, and men were divided into three groups: TEST ( +) 
patients with hypospermatogenesis, TEST (-) group with 
maturation arrest (MA), and TEST (-) group with Ser-
toli cell-only syndrome. The highest levels of SEPT14 
were observed only in sperm from the TEST ( +) group, 
indicating that this protein is associated with the occur-
rence of spermatogenesis [103]. A similar mutation was 
also identified in a similar patient with azoospermia in 
SEPT12 within the GTPase domain and predicted to be 
‘probably damaging’ although this was not investigated 
further [27].

Collectively, this paints a highly regulated picture 
of septin dynamics in mammalian spermatogenesis, 
with specific septin interactions and regulatory factors 
underlying the correct progression of this complex pro-
cess (Fig.  3). Indeed, most investigations linking sep-
tins and spermatogenesis have revolved around SEPT12 
given its testis-specific nature. This is also not limited to 
mutations as modifications such as phosphorylation of 
SEPT12 was also shown to inhibit filament formation, 
resulting in abnormal sperm structure and loss of male 
fertility [92]. However, beyond spermatogenesis, an often 
overlooked process in the context of fertilisation are 
maturation steps the sperm undergoes before fertiliza-
tion; namely – the sperm acrosome reaction (involving 
rapid depolymerization of the apical acrosomal cap of the 

Fig. 3 Schematic illustration of a human sperm illustrating the septin-based annulus. The sperm head and tail are joined via the connecting piece, 
while the annulus (region highlighted by the black box) connects the midpiece and the sperm flagellum. The annulus is a complex between SEPT1, 
SEPT2, SEPT4, SEPT6, SEPT7, and SEPT12, a complex which is associated with cochaperones DNAJB13 (on SEPT1) and SPAG4 (on SEPT12). The CCNYL1/
CDK16 complex also determines the structure and function of the annulus by acting via WNT signalling on SEPT4 clustering in the epididymis. 
Figure adapted from [14]
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sperm head to release digestive enzymes involved at for 
zona pellucida digestion) and sperm capacitation (a series 
of complex physiological and biochemical modifications 
inside the female reproductive tract that activated signal 
transduction pathways leading to actin polymerization 
on the sperm membrane). In both instances, actin reor-
ganization is underlined by sperm  Ca2+ influx. Intrigu-
ingly, as discussed before, Wang et  al. [108] found that 
SEPT12 phosphorylation and SEPT4 activity are required 
to facilitate effective sperm capacitation in mice, suggest-
ing a larger potential arena for septins in sperm beyond 
spermatogenesis.

Septins and the regulation of calcium homeostasis – 
potential avenues for investigation in fertilizing oocytes
Fertilization in mammals is a multistep process in which 
gamete fusion results in the generation of a genetically 
unique individual [1]. This interaction initiates a signal 
transduction cascade where the oocyte is converted into 
a diploid zygote that allows for the initiation of oocyte 
activation [24, 86]. Oocyte activation is an important 
step for the development of an embryo as it is a process 
that involves a series of events that allow for a mature 
metaphase II-arrested oocyte to transition into an early, 
developing embryo [86, 98]. Fertilization elevates cyto-
solic calcium  (Ca2+) levels in oocytes, initiating the signal 
transduction cascade needed for activation [39, 55, 107]. 
Upon gamete fusion, a sperm-specific phospholipase C 
(PLC) isozyme, termed PLCzeta (PLCζ), mediates cyto-
solic  Ca2+ elevations  (Ca2+ oscillations in mammals) by 
hydrolyzing Phosphatidyl inositol-4,5-bis phosphate 
 (PIP2) into inositol-1,4,5-trisphosphate  (IP3) and diacyl-
glycerol.  IP3 binds to  IP3 receptors (IP3Rs) on the ER, 
eliciting  Ca2+ release for several hours [44, 79, 90]. While 
 Ca2+ regulation is known to alter physiological pro-
cesses resulting in conditions including heart disease [45, 
80, 104], abnormal  Ca2+ release profiles may also affect 
embryogenic development via cell cycle progression, a 
key component of oocyte activation [21–23, 43, 46, 47, 
73, 99].

Intracellular  Ca2+ is not the only mechanism at play 
during fertilization and oocyte activation. The decreas-
ing ER  Ca2+ levels are sensed by ER-membrane localized 
Stromal Interaction Molecules (STIM) [66], releasing 
 Ca2+ from the luminal EF-hand domain of STIM, caus-
ing STIM oligomerization and its translocation to ER 
regions in close proximity to the plasma membrane (PM) 
called the ER-PM junctions [18, 65, 112]. STIM pro-
teins at the ER-PM junctions physically interact with the 
 Ca2+-selective Orai channel located on the plasma mem-
brane, which opens upon ER Ca2 + depletion and STIM 
translocation, facilitating extracellular  Ca2+ entry. STIM 
and Orai proteins are key components of SOCE, which 

regulates  Ca2+ influx in response to depleting ER store 
 Ca2+ within cells [38]. Upon ER  Ca2+ store depletion, 
STIM undergoes conformational change, activating Orai 
proteins, which are  Ca2+ channels in the plasma mem-
brane, facilitating  Ca2+ store replenishing in the ER via 
the Sarco/endoplasmic reticulum  Ca2+-ATPase and fur-
ther STIM channels on the ER. This regulated reuptake 
of  Ca2+ into the ER maintains  Ca2+ homeostasis through-
out oocyte activation. In mice, other channels also carry 
extracellular  Ca2+ from the plasma membrane, including 
the low-voltage-activated T-type calcium channel 3.2, the 
transient receptor potential vanilloid member 3, and TRP 
melastatin 7 [107].

Septins seem to play a regulatory role in intracellu-
lar  Ca2+ homeostasis via such mechanisms. With SOCE 
seemingly heavily influenced by septins. Indeed, loss of 
SEPT2, SEPT4, and SEPT5 significantly impaired SOCE 
in Jurkat T-cells (Sonia [91]). SOCE is a tightly regulated 
process, and alongside positive regulators such as STIM/
Orai, negative regulators of SOCE such as SOCE-asso-
ciated Regulatory Factor can destabilize STIM1/Orai1 
complexes [18, 83]. Experiments in Drosophila neurons 
indicated that reduced septin7 supported SOCE via Orai, 
suggesting that septin7 functions as a negative regulator 
of the Drosophila Orai channel in neurons [19]. Given 
such roles of septins alongside their unique membrane-
interacting properties, Deb and Hasan [18] proposed 
that in resting cells, septin filaments help in sequestering 
dOrai in lipid domains that prevent STIM/Orai interac-
tions and Orai opening. Perhaps septin filaments may 
also aid in maintaining  PIP2 organization in the plasma 
membrane, enabling Orai opening when required and 
perhaps playing a role in regional coordination of  Ca2+ 
release in concert with other signalling pathways [18, 48]. 
Indeed, as discussed previously, septins are a key player 
in the regulation of the STIM/Orai complex, indicating 
a significant potential role in the regulation of intracel-
lular  Ca2+ during oocyte activation (S. [91]), and perhaps 
beyond. Given the key role played by septins in such 
 Ca2+-release/regulation pathways, it is worth ascertain-
ing the role of septins in specific cells types where  Ca2+ 
release at large levels occurs – namely within the fertilis-
ing oocyte (predominantly within mammals).

Septins have also been shown to fundamentally interact 
with specific phospholipids in the lipid bilayer, through 
which septins can be organized into filaments, particu-
larly via  PIP2-containing lipid monolayers in yeast [7, 
28]. Septins are also capable of localizing actin filaments 
to the plasma membrane, affecting actin binding to the 
membrane, and can even modify actin polymerization 
[33]. It has also been hypothesized that perhaps septins 
anchor mitochondria to membrane-derived intracellular 
organelles such as endoplasmic reticulum or Golgi [28], 
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considering that membrane proteins of these organelles 
interact with mitochondria [32].

Studies collectively suggest that septins play a role in 
recruiting and translocating STIM1 to ER-PM junctions, 
consequently triggering the activation and redistribu-
tion of the Orai1 channel in the PM [67]. Even before 
ER  Ca2+ store depletion, septins are necessary for the 
proper organization of ORAI1 in the plasma membrane. 
They facilitate the later stages of STIM1 approach to ER-
plasma membrane junctions and the formation of stable 
ORAI1 clusters following store depletion. Upon stimula-
tion, septins redistribute within the plasma membrane, 
aligning temporally with both STIM1 translocation and 
the formation of ORAI1 clusters. Additionally, septins 
delineate a lipid microdomain surrounding the STIM-
ORAI complex, which correlates with the stability of the 
STIM-ORAI complex.

SOCE is initiated by the assembly of Orai1 with STIM 
proteins at ER-PM junctions. PM  PIP2 interacts strongly 
with SEPT4, potentially exerting a significant role in 
modulating the interaction between Orai1 and STIM1. 
Depletion of  PIP2 or knockdown of SEPT4 reduces 
the recruitment of CDC42 to the ER-PM region, while 
knockdown of SEPT4 or CDC42 + ARP2 disrupted actin 
organization and STIM1 clustering, leading to attenua-
tion of Orai1 recruitment to STIM1 puncta, SOCE, and 
NFAT translocation to the nucleus. These findings sug-
gested that  PIP2 and SEPT4 coordinate actin remod-
eling within ER-PM junctions, thereby affecting Orai1/
STIM1 clustering and regulating SOCE and downstream 
 Ca2+-dependent effector functions. [17]. Septins define 
not only cellular regions involved in specific signaling 
processes but also plasma membrane microdomains 
underlying numerous others signaling events (S. [91]). 
Given the importance of septins in regulating  Ca2+ via 
STIM/Orai in various cell types and the importance of 
 Ca2+ regulation at fertilization and oocyte activation, it 
is worth ascertaining the potential role that septins may 
play in this fundamentally important biological process. 
However, not much information is currently forthcom-
ing in the literature regarding the role of septins within 
oocytes, particularly during a specific integral series 
of processes at fertilisation that involves large levels of 
intracellular  Ca2+ at fertilisation; oocyte activation.

An intriguing case was described by H. Chen et  al. 
(11, 12) who reported another heterozygous mutation 
of SEPT12 in an infertile male whose sperm also exhib-
ited oocyte activation failure. In the fertility clinic, such 
cases can potentially be resolved (although not always 
efficiently) via a process called assisted oocyte activa-
tion (AOA), involving use of chemicals called  Ca2+ 
ionophores that artificially induce intracellular  Ca2+ ele-
vations. Intriguingly, the sperm morphology and motility 

of this male patient were within normal ranges (opposed 
to previous cases where SEPT12 mutations resulted in 
sperm abnormalities). Homozygous SEPT12 knockout 
mice generated using CRISPR/Cas methodology by H. 
Chen et al. (11, 12) indicated impaired spermatogenesis 
and infertility following breeding experiments with WT 
females. However, heterozygous mice for this SEPT12 
mutation (mimicking the human patient condition) were 
fertile rather than infertile, where sperm was made and 
was able to result in pups following breeding with WT 
females. Interestingly, examination of PLCζ (the sperm 
factor responsible for oocyte intracellular  Ca2+ release 
and oocyte activation) indicated a complete absence in 
homozygous SEPT12 knockout mice, but present in het-
erozygous knockout mice (albeit reduced compared to 
WT). This perhaps suggests that sperm septin defects 
may not necessarily be limited to spermatogenic failure/
impairment or abnormal sperm morphology, but may 
also be related to other downstream affects in the oocyte 
and early embryo, although such comparative studies still 
need to be performed in humans.

Septins and their potential influence on the dynamic 
fertilising cytoskeleton
Septins are associated with various protein families, such 
as E-cadherin and beta-catenin which assist in main-
taining cell junction integrity [6]. They locate the lateral 
PM during the formation of epithelial cysts, where they 
recruit actin filaments, connect E-cadherin to beta-
catenin, and promote adhesion junction and apicobasal 
polarity. By interacting with cytoskeletal proteins, sep-
tins may be a major contributor to the structural integrity 
and direction of the cytoskeleton. In addition, findings 
have also highlighted septins’ control over the binding of 
molecular motors to cargoes or microtubules, while also 
functioning as scaffolding for the binding of dynein-dyn-
actin to lysosomes in retrograde transport [49].

Oocyte cytoplasmic cytoskeletal dynamics have been 
firmly established to exert a significant role in the com-
petency and eventual success of fertilization, oocyte acti-
vation, and pre-implantation embryogenesis. Indeed, 
even before these processes, effective reorganization of 
relevant cytoplasmic components such as the organelles 
and plasma membrane occurs during oocyte matura-
tion in mammals, the efficacy of which is directly per-
tinent to enhancing  Ca2+ release at fertilization [88]. In 
mice, cortical ER clustering at metaphase II oocytes is 
primarily mediated by microfilaments [26], while in vitro 
matured (IVM) human oocytes (whose oocyte activation 
and embryogenic competency is significantly lower than 
in  vivo matured oocytes) exhibited a severely reduced 
thickness of cortical actin networks compared to the nat-
urally matured counterparts [25], which may explain the 
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compromised efficacy of the  Ca2+ response and develop-
mental competency observed in IVM [70, 88], while actin 
disruption also seemed to underly excessive clustering of 
organelles underlying abnormal oocyte morphology in 
human patients [100].

Indeed, it also seems that the zygotic cytoskeletal envi-
ronment also exerts an effect upon  Ca2+ release at ferti-
lization directly. Cytoskeletal disrupted starfish eggs via 
heparin injection exhibited abnormal  Ca2+  release fol-
lowing sperm injection, failing to prevent polyspermy 
[61, 85, 87]. While these mechanisms are still poorly 
understood in mammals, it does seem that  Ca2+ and 
actin cytoskeleton dynamics are also closely linked in 
such oocytes, given that in mice, calcium release patterns 
corresponded almost exactly to rhythmic cytoplasmic 
actin contractions, which could also predict developmen-
tal potential [3]. Of note are findings that the association 
of SEPT2 – SEPT6 – SEPT7 with actin filaments in vitro 
requires anillin, an actin-binding protein. The structural 
arrangement of Septins on actin filaments within cells, 
in the form of oligomers or filamentous polymers, influ-
ences microtubule dynamics [97].

The septins Cdc3, Cdc10, Cdc11, and Shs1 in a cell 
are organized in a manner that frames the localization 
of formin Bnr1, a protein that promotes the elonga-
tion of pre-existing filament, and Hof1, a domain pro-
tein that binds actin. This scaffolding depends on the 
protein kinase Gin4, which allows the even distribu-
tion and organization of actin filaments [97]. It would 
be immensely interesting to investigate the association 
of such septin families in the context of cytoplasmic 

reorganisation in fertilising oocytes or zygotes to ascer-
tain the potential improtant role that septins could be 
playing in this very dynamic stage of pre-implantation 
embryogenesis, particularly given the potential diagnos-
tic role carried by observing cytoplasmic dynamics in 
relation to human embryogenesis [3].

The actin-binding sequence of SEPT9 has been iden-
tified within its amino-terminal basic domain. SEPT9 
interacts with actin surface domains, which are also 
bound by the ATP-bound myosin V subfragment 1 and 
the actin-severing protein cofilin. Septin interaction with 
actin is also mediated by anillin, non-muscle myosin II, 
and effectors of the small GTPases Cdc42 and Rho [97]. 
Therefore, septins can directly influence the organiza-
tion of actin filaments through physical crosslinking, 
bundling, and bending, and indirectly with actin-bind-
ing proteins. SEPT9 (also seems critical for progression 
past MI in mouse maturing oocytes, where abrogation 
of SEPT9 prevented MI arrest alleviation and also dis-
ruption of chromosome kinetochores and spindles [13], 
suggesting a potential role in the distribution of chro-
mosomes in the first polar body. This activity could 
be rescued by injection of SEPT9 RNA, suggesting an 
important role for SEPT9 in potentially underlying Meio-
sis I failure in mammalian oocytes [13]. A similar role for 
SEPT4 was also suggested, as deleting this septin resulted 
in failure to progress to the MI stage in mouse oocytes (L. 
[11, 12]) (Fig. 4).

While SEPT7 seemingly regulates the cellular 
cytoskeleton, SEPT7 depletion in oocytes via siRNA 
microinjection abrogated spindle arrangement and 

Fig. 4 Schematic illustration of how SEPT9 could exert a regulatory role during the Metaphase I (MI) to Anaphase I (AI) transition in mouse oocytes 
by influencing the stability of kinetochore-microtubule connections. In wild type mice, SEPT9 allowed CCNB1 (green) degradation, allowing 
the MI to AI transition followed by the first polar body extrusion. However, depleting SEPT9 disrupted CCNB1 degradation by sustained activation 
of the spindle assembly checkpoint (SAC) and downregulating the activity of the anaphase promoting complex (APC/CCDC20). The sustained 
SAC activation was driven by unstable kinetochore-microtubule connections in SEPT9 -depleted oocytes, which arrested at the MI stage and did 
not extrude the first polar body. Figure adapted from [13]
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the emission of the first polar body (PB1). Cells with 
inhibited SEPT7 exhibited a decreased tension at the 
kinetochores of chromosomes aligned at the oppo-
site poles of a bipolar spindle, indicating that SEPT7 
depletion in the cell underlies increased spindle defects 
and decreased polar body emission [60] in addition to 
cytoskeletal dynamics at fertilisation/early embryo-
genesis. Conversely, SEPT7 overexpression in mouse 
oocytes interfered with chromosome alignment and the 
regulation of α-tubulin recruitment to spindles, con-
sequently influencing the emission of the second polar 
body following fertilisation [60], suggesting that SEPT7 
overexpression interrupted chromosome arrangement, 
hence affecting the emission of the second polar body, 
underlying abnormal meiosis II completion. Further-
more, SEPT1 in the oocyte was found to be localized 
along the complete meiotic spindle, seemingly exerting 
a role in chromosome segregation and spindle assembly 
[113]. Injection of oocytes with SEPT1 siRNA resulted 
in damaged spindles, leading to chromosomal mis-
alignment. Upon assessing whether SEPT1 -depleted 
oocytes could continue to maturation, polar body 
emission was only slightly decreased, with 50% of the 
oocytes completing meiosis I [113].

One of the major reasons underlying low pregnancy 
rates following fertility treatment are currently con-
sidered to be chromosomal abnormalities underlying 
pregnancy loss and birth defects [69, 105]. Of most 
concern are chromosomal defects arising during meio-
sis, as this will impart such abnormalities in all embry-
onic cells. The incidence of such aneuploidies is also 
correlative with increasing maternal age, where 65–70% 
of women post-35 years of age exhibiting such defects 
[9, 75], and can originate from errors during the first 
meiotic division (MI), the second meiotic division (MII) 
or from both [105]. However, the specific causes under-
lying aneuploidies in oocytes remains a subject requir-
ing significant investigation, especially relating to the 
mechanisms underlying chromatid segregation. Indeed, 
Verdyck et al. [105] found that the predominant cause 
underlying aneuploidy was precocious separation of 
sister chromatids (PSSC) in MI (~ 49% of cases in their 
cohort), followed by reverse segregation or non-dis-
junction of chromatids following MII (~ 36% of cases). 
Given that septins seem to exert significant effect upon 
the efficacy of cytokinesis and its successful segregation 
of chromatids, it is rather surprising that more investi-
gations have not been performed examining septins in 
the context of embryo aneuploidies, particularly when 
considering that a sizeable portion of aneuploidies in 
embryos remain unexplained due to incomplete knowl-
edge of the mechanisms governing this phenomenon 
[105].

Conclusion and future perspectives
In conclusion, the review highlighted the importance 
of septins in processes like spermatogenesis and oocyte 
activation. Septins play a significant role in maintain-
ing cell shape, supporting cellular structures, and 
regulating intracellular  Ca2+ levels, impacting fertil-
ity and embryonic development. Specifically, knock 
out of SEPT4, SEPT12 and SEPT14 resulted in mice 
with impaired annulus, sperm motility or count. These 
studies provide evidence that septins might be key ele-
ments in mammalian infertility and understanding the 
mechanisms could help in developing novel treatments. 
However, despite the growing network of evidence pre-
sent to suggest a dynamic role of septins throughout 
the mammalian reproductive process, very few stud-
ies have been devoted to ascertaining the extent and 
nature of this. Indeed, while the role of septins has been 
investigated thoroughly in the context of spermatogen-
esis, this requires more in depth investigation at further 
sperm maturation levels (namely the acrosome reac-
tion and capacitation), particularly in the context of 
sperm clinical parameters such as sperm motility and 
morphology, and perhaps its correlation with molecu-
lar markers of fertilisation such as PLCζ. Furthermore, 
while some preliminary studies have been performed 
regarding the role of septins in mammalian oocytes, 
these seem predominantly related to oocyte maturation 
and completion of the first meiosis. There is a consid-
erable amount of work that could be directly relevant 
to embryogenesis and clinical treatment fidelity by 
examining the role of septins in the context of early fer-
tilisation and subsequent pre-implantation embryogen-
esis. Further investigations are necessary to unveil the 
unknown mechanisms by which septins regulate these 
immensely important processes, the answers to which 
may also tremendously benefit not only basic knowl-
edge underlying cell and reproductive biology, but also 
in the treatment of infertility.
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