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Abstract 

The realm of hematopoietic stem cell transplantation (HSCT) has witnessed remarkable advancements in elevating 
the cure and survival rates for patients with both malignant and non-malignant hematologic diseases. Nevertheless, 
a considerable number of patients continue to face challenges, including transplant-related complications, infec-
tion, graft failure, and mortality. Inflammasomes, the multi-protein complexes of the innate immune system, respond 
to various danger signals by releasing inflammatory cytokines and even mediating cell death. While moderate activa-
tion of inflammasomes is essential for immune defense and homeostasis maintenance, excessive activation precipi-
tates inflammatory damage. The intricate interplay between HSCT and inflammasomes arises from their pivotal roles 
in immune responses and inflammation. This review examines the molecular architecture and composition of various 
types of inflammasomes, highlighting their activation and effector mechanisms within the context of the HSCT pro-
cess and its associated complications. Additionally, we summarize the therapeutic implications of targeting inflam-
masomes and related factors in HSCT.
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Introduction
Hematopoietic stem cell transplantation (HSCT) 
entails the intravenous infusion of hematopoietic 
stem and progenitor cells (HSPCs) after conditioning 
regimens like high-dose chemotherapy and/or radio-
therapy. The primary objective is to eradicate residual 
tumour cells via graft-versus-leukemia (GVL) effects, 

while simultaneously replacing damaged or dysfunc-
tional HSPCs to rejuvenate both the hematopoietic and 
immune systems [1]. Since the pioneering efforts of Gatti, 
Good [2], and Thomas [3] in the late 1960s, who initially 
employed HSCT to address human immunodeficiency 
disorders and aplastic anemia, this technology has been 
widely adopted for treating benign and malignant hemat-
opoietic diseases. As a curative approach, HSCT has 
significantly improved clinical outcomes. From 1957 to 
2019, over 1.5 million HSCT procedures were performed 
worldwide, with an annual growth rate exceeding 10% 
[4]. Despite recent significant advancements in HSCT, 
such as expanded indications, improved management 
of complications, and better integration with targeted 
therapies and immunotherapies [5]. HSCT still poses 
substantial risks for graft failure, relapse, and severe 
transplant-related complications, which are closely 
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linked to immune tolerance and reconstruction [6, 7]. 
Therefore, elucidating the mechanisms underlying these 
adverse outcomes and identifying novel therapeutic tar-
gets are crucial.

The innate immune system acts as the body’s ini-
tial defense mechanism against invasion and endog-
enous threats, playing a critical role in eliminating 
infections and damaged cells [8]. The central mechanism 
of this immune response is triggered by cytoplasmic 
protein complexes called inflammasomes [9]. Inflam-
masomes possess a remarkable capacity to swiftly dis-
cern pathogen-associated molecular patterns (PAMPs) 
and danger-associated molecular patterns (DAMPs). 
Their activation subsequently triggers innate immune 
responses by facilitating the release of pro-inflamma-
tory cytokines interleukin-1β (IL-1β) and interleukin-18 
(IL-18), initiating an inflammatory cascade [10]. Proper 
inflammasome activation can swiftly eliminate dam-
aged cells and strengthen immune defense. However, 
prolonged activation causes severe tissue damage in the 
body and may induce pyroptosis, a highly inflamma-
tory form of cell death characterized by cellular lysis and 
destruction [11]. More than ten types of inflammasomes 
have been identified currently, each intricately inter-
twined in the pathogenesis of inflammatory and meta-
bolic diseases, including cancer, diabetes, and infections 
[12, 13]. The intense reactivity of inflammasomes to vari-
ous danger signals broadens their association with other 
diseases. Emerging evidence supports that inflammas-
omes are widely expressed in the hematopoietic system 
and have participated in several critical stages of HSCT. 
NLRP1, NLRP2, and NLRP3 have demonstrated signifi-
cant prognostic implications for overall survival, relapse, 
and non-relapse mortality rates in HSCT [14]. Thus, 
meticulous modulation of inflammasome activation and 
tempering their excessive response are beneficial for 
post-HSCT outcomes.

In this paper, we present an overview of the individu-
ality and commonality among different inflammasomes, 
focusing on their composition, activation, and effector 
functions. We systematically address the key roles of 
inflammasomes in coordinating mobilization, hemat-
opoietic reconstitution, and associated complications, 
with particular emphasis on acute graft-versus-host dis-
ease (aGVHD). Finally, we assess the potential benefits of 
targeting inflammasomes in the treatment of HSCT.

Inflammasomes
Classification and composition of inflammasomes
The concept of inflammasomes, first described by Mar-
tinon et al. (2002), refers to multiprotein complexes and 
immune regulators that respond to pathogenic or physi-
ological stimuli [10]. To date, more than ten types of 

inflammasomes have been identified, distinguished pri-
marily by their components, activation mechanisms, and 
biological functions. Inflammasomes are categorized into 
three types according to their constituent proteins: the 
NLR family, the ALR family, and the Pyrin [15]. This sec-
tion introduces several common inflammasomes.

The NLR family
The NLR family is the most well-characterized, consist-
ing primarily of NLRP1, NLRP3, NLRP6, and NLRC4 
[16]. These inflammasomes feature three functionally 
distinct domains. The C-terminal leucine-rich repeat 
(LRR) domain acts as the “sensor”, recognizing and bind-
ing ligands due to its unique three-dimensional struc-
ture [17]. These ligands include exogenous PAMPs and 
endogenous DAMPs, differing in their molecular ori-
gins. The innate immune system rapidly recognizes and 
responds to signals from invading pathogens or dam-
aged self-cells by distinguishing between self and non-self 
components [8]. The nucleotide-binding domain (NBD), 
also referred to as NACHT, is shared by other NLR 
members and facilitates LRR oligomerization by binding 
adenosine triphosphate (ATP). This interaction relieves 
the autoinhibition of LRR and promotes immune signal 
transduction [18]. Due to the sensitivity of the NBD to 
mutations, functional changes are commonly observed 
[19]. It is worth mentioning that NLRP1 exerts its func-
tion independently of the ATPase activity of the NBD. It 
features a unique FIIND domain non-covalently linked 
to the N-terminus to self-cleavage, separating the N-ter-
minal and C-terminal domains of NLRP1 and leading to 
its activation [20]. Another significant protein domain 
is the variable N-terminal domain containing the pyrin 
domain (PYD), caspase recruitment domain (CARD) as 
well as baculovirus inhibitor of apoptosis repeat (BIR) 
domain. These domains interact with the adaptor protein 
ASC through PYD-PYD or CARD-CARD linkages, ulti-
mately resulting in the activation of pro-caspase-1 [21]. 
NLRs are categorized into four subfamilies based on their 
divergent N-terminal domains: CIITA with an acidic 
transactivation domain, BIR domain, NLRPs with an 
N-terminal Pyrin domain and NLRCs with an N-terminal 
CARD domain [16].

The ALR family
The ALR family includes AIM2 and IFI16, both of 
which structurally contain the C-terminal oligonucleo-
tide DNA-binding HIN-200 domain and an N-terminal 
domain composed solely of PYD [22]. These domains 
facilitate the nonspecific recognition of DNA through 
electrostatic interactions, where positively charged con-
secutive oligonucleotide/oligosaccharide-binding resi-
dues in the HIN domain interacts with the negatively 
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charged sugar-phosphate backbone of double-stranded 
DNA (dsDNA). This electrostatic interaction enables 
the HIN domain to recognize aberrant endogenous or 
exogenous DNA structures [23]. Subsequently, the sig-
nal is relayed to the N-terminal PYD, which exhibits a 
pronounced tendency for self-oligomerization. Binding 
of dsDNA induces conformational changes in the HIN 
domain, exposing the PYD and initiating signal trans-
duction [24]. The exposed PYD interacts with ASC, 
promoting oligomerization and recruiting caspase-1 via 
CARD-CARD interactions [25]. Unlike AIM2, the IFI16 
protein can localize to both the nucleus and the cyto-
plasm. IFI16 contains two HIN-200 domains, which are 
separated by a linker region rich in serine, threonine, and 
proline residues [26]. In addition to its role in classical 

inflammasome activation, the PYD of IFI16 indirectly 
activates the stimulator of interferon genes (STING) 
pathway through oligomerization, leading to the induc-
tion of type I interferon production [26].

The pyrin
Pyrin, named after the Greek word for “fever”, con-
tains an N-terminal PYD, a B-box domain, a coiled-coil 
domain, and a C-terminal B30.2/SPRY domain [27]. The 
B30.2/SPRY domain in Pyrin detects alterations in the 
cytoskeleton and transmits danger signals, typically trig-
gered by pathogen infections (Fig.  1B) [28]. The PYD 
interacts with ASC through signal transduction, partici-
pating in the activation of the classical inflammasome. 

Fig. 1  Inflammasomes are multiprotein complexes composed of several domains with distinct functions. They are activated upon detecting 
various danger signals, such as pathogen toxins, nucleic acids, secretion systems, changes in cellular structures, metabolic alterations, ionic 
disturbances, and organelle damage. The PYD domain of inflammasomes interacts with the adaptor protein ASC, facilitating the assembly 
of the inflammasome complex. Subsequently, the CARD domain of ASC recruits pro-caspase-1 to form the complex. In the canonical signaling 
pathway, inflammasome activation results in the self-cleavage and activation of caspase-1. Activated caspase-1 then cleaves pro-IL-1β and pro-IL-18 
into their mature, biologically active forms. Additionally, it cleaves GSDMD, generating its active N-terminal domain, which oligomerizes to form 
stable pores in the plasma membrane. This pore formation induces cell swelling and rupture, leading to inflammatory cell death and the release 
of intracellular substances such as IL-1β, IL-18, HMGB1, and LDH. In the non-canonical signaling pathway, LPS directly binds to the CARD domain 
of caspase-4/5/11, resulting in the cleavage of GSDMD. However, GSDMD requires NLRP3 activation to cleave pro-IL-1β and pro-IL-18
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The remaining domains contribute to signal transmission 
and maintaining structural stability [27].

Activation of inflammasomes
The differentiation between priming and activating sig-
nals in inflammasomes minimizes redundancy, thereby 
effectively regulating the immune protective functions 
of these complexes and mitigating tissue damage under 
various conditions.

NLRP3, the most extensively studied inflammasome, is 
activated by a wide range of irritants and pathogens. Its 
activation requires a dual-signal mechanism to ensure 
stringent regulation. The first signal, priming, is elicited 
by both PAMPs and DAMPs. PAMPs encompass con-
served structures found on pathogens, such as lipopoly-
saccharide (LPS) derived from gram-negative bacteria, 
components of cell walls and viral nucleic acids [29]. 
DAMPs are endogenous molecules released in response 
to cellular stress or injury within the host. These include 
high mobility group box  1 (HMGB1), S100 calcium-
binding protein, heat shock proteins, ATP, and uric acid 
[30]. Both PAMPs and DAMPs are recognized by cell 
surface receptors such as Toll-like receptors (TLRs) and 
NOD-like receptors (NLRs), including NOD1 and NOD2 
as well as cytokine receptors like the IL-1 receptor and 
tumor necrosis factor-alpha receptor (TNF-α). The acti-
vation of these receptors triggers signaling molecules 
myeloid differentiation primary response 88 (MyD88), 
which subsequently lead to the transcriptional activation 
of NF-κB and the upregulation of NLRP3 [31, 32]. The 
priming step is regulated by both the transcriptional con-
trol of inflammasome components, which modulates the 
quantity of inflammasome subunits, and post-transla-
tional modifications, such as ubiquitination, phosphoryl-
ation, and succinylation [33]. Subsequently, the activation 
signal directly induces the assembly of NLRP3 oligomers, 
ASC, and pro-caspase-1 into the inflammasome pro-
tein complex. This signal is associated with various cel-
lular disturbances, including alterations in ion channels, 
such as potassium ion (K+) efflux and calcium ion (Ca2+) 
influx, as well as the generation of reactive oxygen spe-
cies (ROS) resulting from oxidative stress, mitochondrial 
dysfunction, lysosomal rupture, and metabolic changes 
[34]. Collectively, these closely related, multi-layered sig-
nals regulate and determine NLRP3 activation.

Anthrax lethal toxin (LeTx) enters the cytoplasm by 
oligomerizing protective antigen on the host cell mem-
brane. The lethal toxin protease subunit subsequently 
cleaves the N-terminus of murine NLRP1, thereby expos-
ing its CARD domain and activating the NLRP1 inflam-
masome [35]. Similar effects are observed with viral 
proteases that cleave human NLRP1 [36]. Additionally, 
viral proteases [37], phosphorylation modifications due 

to viral infection [38], and intracellular DNA damage 
[39] can alter the conformation of NLRP1. NLRP6 is pri-
marily expressed in the intestines, lungs, and liver, and it 
plays a crucial role in the host’s defense against microbial 
infections. Similarly, full activation of the NLRP6 inflam-
masome requires both priming and activation signals. 
Priming signals encompass microbial signals (interferon 
signaling) [40] and metabolic pathways (peroxisome pro-
liferator-activated receptor gamma, PPAR-γ) [41], which 
promote the transcription and expression of NLRP6 [42]. 
Once NLRP6 has accumulated sufficiently, activation sig-
nals, including microbe-associated molecular patterns 
(MAMPs), become effective. These MAMPs consist of 
microbial components and metabolic products, such as 
lipoteichoic acid (LTA) from gram-positive bacteria [43], 
LPS and ATP from gram-negative bacteria [44], as well as 
certain microbial metabolites like taurine, histamine, and 
spermidine [45]. Additionally, NLRC4 primarily responds 
to bacterial flagellin and the type III or type IV secretion 
systems (T3SS or T4SS) of gram-negative bacteria [46]. 
AIM2 and IFI16 primarily recognize intracellular dsDNA 
through electrostatic interactions mediated by HIN-200 
domain [47]. AIM2 is predominantly activated by path-
ogen-derived dsDNA, thereby protecting the host from 
microbial invasion, a phenomenon frequently observed 
during viral infections [48]. In the non-classical activation 
pathway, low concentrations of bacterial DNA stimulate 
type I interferon production via the cyclic GMP-AMP 
synthase (cGAS) pathway, which serves as a sensor for 
cytosolic dsDNA. This signaling cascade results in the 
transcription of interferon-inducible genes, including 
GTPases, which promote bacteriolysis and facilitate the 
release of bacterial DNA into the cytoplasm. The released 
bacterial DNA is subsequently detected and recognized 
by the AIM2 inflammasome, leading to its activation [49, 
50]. IFI16 senses both dsDNA and ssDNA, recruiting the 
endoplasmic reticulum protein STING. This interaction 
subsequently activates interferon-gamma (INF-γ) and 
pro-inflammatory cytokines through the TBK1-IRF3 and 
NF-κB signaling pathways, thereby exerting significant 
antiviral effects (Fig. 1A) [51].

Effects of inflammasomes
Despite variations in composition and signaling path-
ways, inflammasomes exhibit structural similarities that 
align with their extensive functional overlap. Inflammas-
omes primarily recruit and activate pro-caspase-1, which 
then promotes the maturation and secretion of pro-
inflammatory cytokines IL-1β and IL-18, and induces 
cell death through pyroptosis, apoptosis, and PANopto-
sis [52]. Specifically, inflammasomes begin to assemble 
upon receiving priming and activation signals, with ASC 
functioning as an “adapter” or “bridge”. ASC contains 
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PYD and CARD domains, which facilitate interactions 
through homotypic PYD–PYD and CARD–CARD asso-
ciations with pro-caspase-1 [53]. Notably, ASC amplifies 
the inflammasome signaling [54] and is essential for the 
assembly of most characterized inflammasomes includ-
ing NLRP3, AIM2, IFI16, and Pyrin. Conversely, NLRP1 
and NLRC4, endowed with inherent CARD domains, can 
interact autonomously with pro-caspase-1 independent 
of ASC [55].

The assembly of this complex facilitates the proteo-
lytic self-cleavage of pro-caspase-1 at Gly315, result-
ing in the generation of the active caspase-1 subunits, 
referred to as p20 and p10 subunits [56]. Once activated, 
caspase-1 cleaves the downstream effector molecules 
pro-IL-1β and pro-IL-18, thereby releasing their active 
forms (IL-1β and IL-18) extracellularly, which initiate 
a robust inflammatory response to combat the invasion 
of exogenous pathogens [57]. Additionally, caspase pro-
teins activated by inflammasomes trigger pyroptosis, a 
distinct programmed cell death pathway characterized 
by rapid plasma membrane rupture due to the cleavage 
of pore-forming effector proteins from the gasdermin 
family [58, 59]. Pyroptosis is further classified into the 
caspase-1-mediated canonical signaling pathway and the 
caspase-4/5/11-mediated non-canonical signaling path-
way. In the classical pathway, the gasdermin protein, typi-
cally GSDMD, is cleaved by caspase-1 at a flexible linker, 
which releases the self-inhibitory N-terminal pore-form-
ing domain and the C-terminal repressor domain [60]. 
The N-terminus of specific proteins can bind to particular 
lipids, such as phosphatidylinositol found in eukaryotic 
cell membranes and cardiolipin present in prokaryotic 
or mitochondrial membranes. In certain instances, these 
interactions may result in oligomerization and the forma-
tion of pore structures within the membrane [61].

The influx and efflux of K+, sodium ions (Na+), and 
water through stable pores initiate various GSDMD-
dependent processes, including cell swelling, rapid 
plasma membrane rupture, and the modulation of 
pro-inflammatory components such as the cytokines 
IL-1β and IL-18, intracellular components (antigens or 
DAMPs), and intracellular hydrolases [62]. Pyroptosis 
leads to rapid cell failure and creates a potent inflam-
matory environment, which aids in the defense against 
infection or malignant transformation. The non-canoni-
cal signaling pathway operates independently of inflam-
masome signaling cascades to activate caspases. Instead, 
the CARD domains of caspase-4/5/11 directly detect 
lipopolysaccharides (LPS) within host cells, facilitat-
ing the cleavage of GSDMD [63]. Although these cas-
pases can induce pyroptosis, they cannot directly cleave 
pro-IL-1β or pro-IL-18, necessitating the synergistic 
activation of canonical inflammasomes to amplify the 

inflammatory response [64]. Furthermore, there exists a 
complex interplay between inflammasomes and apopto-
sis, which includes the cell fate switch among apoptosis, 
necroptosis, and pyroptosis, as well as the activation or 
inhibition of inflammasomes by apoptotic pathways [65, 
66]. This interplay may also encompass PANoptosis, a 
composite form of cell death that integrates features from 
multiple death pathways [67]. A comprehensive discus-
sion of this area exceeds the scope of this study. These 
multilayered regulatory issues will not be explored in 
detail here (Fig. 1C).

Given the diversity of inflammasomes and their com-
plex activation and regulatory mechanisms, it is of great 
importance to delineate the boundaries between moder-
ate activation and excessive activation. The boundaries 
are dynamically continuous and closely related to the 
outcomes following activation [68]. Firstly, different acti-
vation products influence the nature of inflammasome 
activation. Generally, PAMPs are regarded as lower-risk 
and more defensible threats, while cytoplasmic DAMPs 
can trigger cell death and pose a higher risk [69]. For 
example, inflammasomes can swiftly detect exogenous 
bacterial or viral infections and subsequently secrete 
IL-1β and IL-18 to alert neighboring cells, thereby lim-
iting the spread of infection. Concurrently, inflammas-
omes can induce pyroptosis, releasing pathogens and 
destroying their replication niche, which enables neutro-
phils to rapidly engulf and eliminate the pathogens [70]. 
This transient and rapidly diminishing immune defense is 
often advantageous to the host, as it not only clears harm-
ful stimuli but also initiates the healing process to repair 
tissue damage. However, the relationship between host 
defense and uncontrolled inflammation is intricate and 
multifaceted [71]. Excessive activation of inflammasomes 
can lead to acute inflammatory damage or be exploited 
by pathogens for immune evasion, but such occurrences 
are relatively rare [72]. In contrast, the safety window for 
inflammasome activation in response to DAMPs is nar-
rower, and even a slight imbalance can result in sustained 
pathological damage. This phenomenon has been found 
to be closely associated with modern lifestyle factors, 
including smoking, obesity, and psychological stress, all 
of which are directly or indirectly linked to the produc-
tion of DAMPs. These factors may be one of the causes 
behind the development of various chronic diseases, such 
as type 2 diabetes and atherosclerosis [69]. Addition-
ally, the activation of inflammasomes in various diseases 
demonstrates a dual-edged sword effect [73]. On one 
hand, inflammasome activation facilitates the clearance 
of pathogens and mitigates infection-induced damage. 
On the other hand, in autoimmune or metabolic diseases, 
chronic inflammasome activation may exacerbate dis-
ease progression, resulting in fibrosis and sclerosis [70]. 
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In tumors characterized by high heterogeneity, these 
effects are particularly pronounced. It enhances anti-
tumor immunity and slows tumor progression by activat-
ing pyroptosis and regulating the activity of natural killer 
(NK) cells and T cells. However, IL-1β and IL-18 can pro-
mote tumor signaling, thereby inducing tumor prolifera-
tion, invasion, and angiogenesis [74, 75]. The dual nature 
of this property is significantly influenced by the interplay 
of genetic background, tumor microenvironment, tissue 
type, and downstream molecules. Currently, the bound-
ary between moderate activation and excessive activa-
tion remains ambiguous. Research has indicated that 
epigenetic regulation such as DNA methylation, histone 
modifications and post-translational modifications, may 
offer multi-layered insights into the intricate regulation 
of inflammasomes [76]. Nevertheless, critical issues such 
as the levels, spatial ranges, intensities, and synergies of 
inflammatory factors require further investigation. This 
is particularly important for conducting layered research 
utilizing cell fate maps, in vivo imaging technology, and 
organoid models to comprehensively analyze the regula-
tory network of the inflammasomes.

Role of inflammasomes in hematopoietic stem cell 
transplantation
Participation in mobilization, homing, and engraftment
Mobilization and homing are critical yet contrasting 
stages essential for successful HPSCs migration, par-
ticularly in the contexts of bone marrow adhesion and 
chemotaxis [77]. Previous studies have underscored the 
paramount importance of inflammasomes, especially 
NLRP3, in maintaining the delicate equilibrium between 
these processes.

Mobilization can be divided into three distinct phases: 
initiation, amplification, and effector. The initiation 
phase is driven by various pro-inflammatory media-
tors that accumulate through positive feedback mecha-
nisms. Granulocyte-colony stimulating factor (G-CSF) 
and AMD3100, which are complementary mobilizing 
agents, are commonly employed to stimulate the produc-
tion of DAMPs that induce sterile inflammation. These 
DAMPs activate innate immune cells, primarily neutro-
phils and monocytes in the microenvironment. Upon 
tissue damage, these cells release additional DAMPs, 
such as ATP and ROS [78]. Prior to this cascade, innate 
immune cells have already recapitulated the initial signal 
of the NLRP3 inflammasome through the gut-derived 
LPS from gram-negative bacteria by binding to TLR4 
[79, 80]. Subsequently, ATP emerges as the most critical 
second signal, released extracellularly through the pan-
nexin-1 membrane channel, which serves as an essential 
transmembrane pathway connecting the intracellular 
and extracellular environments [81]. Studies showed that 

inhibition of the pannexin-1 channel by 10Panx impaired 
the mobilization of HSPCs and negatively affected the 
engraftment of white blood cells and platelets [82]. In 
the extracellular space, extracellular ATP (eATP) serves 
as an activating ligand for several ionotropic P2X and 
metabotropic P2Y purinergic receptors [83, 84]. Spe-
cifically, eATP interacts with purinergic receptors P2X7, 
P2X4, and P2X1, which are highly expressed in HSPCs, 
facilitating Ca2+ influx as an activation signal for NLRP3 
[85]. Notably, eATP is also processed by cell surface ecto-
nucleotidases CD39 and CD73 into its metabolites: ADP 
and AMP (produced by CD39), and adenosine (produced 
by CD73) [86]. Conversely, adenosine exerts an inhibi-
tory effect during mobilization through heme oxyge-
nase 1 (HO-1) [87] and inducible nitric oxide synthase 
(iNOS) [88], suppressing NLRP3 activation and reducing 
adhesion capacity, ultimately inhibiting the migration of 
HSPCs [89]. The release of mature and biologically active 
IL-1β and IL-18 is contingent upon the inflammasome-
mediated activation of caspase-1, which facilitates com-
munication among innate immune cells via autocrine 
and paracrine pathways. This process further stimu-
lates the release of additional DAMPs, such as HMGB1 
and S100A9 [90]. It is plausible that NLRP1, AIM2, and 
NLRP12 inflammasomes may also exert similar effects in 
response to eATP and other DAMPs; however, the spe-
cific mechanisms underlying these interactions remain 
to be elucidated [91]. Moreover, supplementation with 
IL-1β or IL-18 demonstrated limited mobilization in 
NLRP3-deficient and caspase-1-deficient models, a 
deficiency that could be corrected by the injection of a 
DAMP mixture (eATP + HMGB1 + S100A9) [92]. These 
factors appeared to establish a positive feedback loop 
that enhances sustained ATP release and NLRP3 activa-
tion, ultimately leading to optimal mobilization outcomes 
(Fig. 2A).

During the amplification phase, these DAMPs activate 
the complement cascade (ComC) through three main 
pathways: C1q (classical pathway), mannose-binding lec-
tin (MBL) and Factor B (via the alternative pathway) [93]. 
Notably, DAMPs primarily exert their effects by activat-
ing the MBL pathway [94]. The DAMPs-MBL complex 
subsequently triggers mannose-binding lectin-associated 
serine proteases (MASPs), which cleave and activate 
complement 3 (C3) and prothrombin, thereby induc-
ing the activation of ComC and the coagulation cascade 
(CoaC) [93, 95]. Furthermore, the study found that Fac-
tor B deficiency inhibited NLRP3 and the activation of 
the alternative pathway, leading to poor cell homing and 
engraftment [96]. Furthermore, the study found that Fac-
tor B deficiency inhibited NLRP3 and the activation of 
the alternative pathway, leading to poor cell homing and 
engraftment [92]. These pathways converge in a shared 
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terminal response, resulting in the formation of C5a, 
C3a, and C5b-9 (membrane attack complex, MAC) as 
potent inflammatory effector molecules, which connect 
complement, coagulation, and fibrinolysis proteolytic 
cascades [97, 98] (Fig. 2B).

In the effector phase, the migration of HSPCs is 
dependent on ligand-receptor interactions between stro-
mal cell-derived factor 1 (SDF-1) and its receptor, C-X-C 
chemokine receptor type 4 (CXCR4) [99], as well as very 
late antigen-4 (VLA-4) and its receptor vascular cell 
adhesion molecule 1 (VCAM-1) [100, 101]. Upon bind-
ing to their respective receptors, these agents activate 

HSPCs and enhance their proliferation. NLRP3 was 
activated by C5a, desArgC5a, and MAC, maintaining a 
sterile inflammatory state in the bone marrow microen-
vironment. These fragments and anaphylatoxins facili-
tate granulocyte degranulation, leading to the release of 
hydrolases or lipases, thereby compromising the bone 
marrow niche associated with the SDF-1/CXCR4 and 
VLA-4-VCAM-1 axis. Simultaneously, innate immune 
cells migrate between the bone marrow endothelium and 
the periphery in response to chemotactic signals [102, 
103]. Additionally, a sphingosine-1 phosphate (S1P) gra-
dient transition between bone marrow and peripheral 

Fig. 2  Role of inflammasomes in the three stages of HSCT Mobilization. A In the initiation phase, mobilizing agents stimulate the transmembrane 
protein pannexin-1 in innate immune cells, leading to the release of eATP. eATP subsequently binds to P2X ion channels (P2X1, P2X4, P2X7), 
causing an influx of K+ and an efflux of Ca2+, which triggers the activation of inflammasomes and caspase-1. This process also results in the release 
of various DAMPs, such as IL-1β, IL-18, HMGB1, and S100A9 through GSDMD, thereby creating a positive feedback loop that amplifies inflammation. 
B During the amplification phase, DAMPs modulate the MBL/MASPs pathway and the alternative complement pathway, triggering the activation 
of the ComC and CoaC. This results in the production of C3a, C5a, desArgC5a, and the C5b-C9 complex. At this stage, eATP is converted 
into adenosine by CD39 and CD73, which inhibits mobilization by upregulating HO-1 and iNOS. Pathways promoting mobilization are indicated 
by red arrows, while the inhibitory pathways associated with adenosine are marked by blue arrows. C In the effector phase, C5a initiates NLRP3 
activation in HSPCs, further escalating the inflammatory response. Additionally, these complement molecules enhance granulocyte degranulation, 
leading to the secretion of hydrolases that weaken the CXCR4-SDF-1 and VLA-4-VCAM-1 axis. S1P is released by the MAC to chemotax HSPCs 
into peripheral blood vessels. Moreover, lipid rafts are stimulated by increased membrane assembly via the Nox2/ROS/NLRP3 pathway. This process 
facilitates the integration of CXCR4 and VLA-4 on the plasma membrane, enhancing HSPCs’ sensitivity to environmental signals, thereby promoting 
their mobilization, homing, and engraftment
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blood induces HSPCs to cross the vascular endothelium 
and enter peripheral blood. S1P is released by red blood 
cells upon MAC induction in peripheral blood to facili-
tate optimal HSPC mobilization [104]. C3a maintains the 
retention of HSPCs rather than mobilization by enhanc-
ing their responsiveness to SDF-1 in the bone marrow to 
prevent an uncontrolled release of HSPCs [105].

Lipid rafts, which are membrane microdomains 
enriched in glycosphingolipids and protein receptors, 
enhance the efficiency of signal transduction and pro-
long the surface residency of receptors such as CXCR4 
and VLA-4. This augmentation increases the sensitivity 
and responsiveness of HSPCs to microenvironmental 
signals [106]. The Nox2-ROS-NLRP3 inflammasome axis 
played a crucial role in regulating lipid raft assembly and 
the expression of lipid-synthesizing enzymes [97, 107]. 
eATP and inflammasomes facilitated the incorporation 
of the homing receptor CXCR4 into lipid rafts, thereby 
strengthening the response to the SDF-1 gradient and 
promoting the migration and engraftment of HSPCs 
(Fig. 2C) [108].

Disruption of hematopoiesis and post‑transplant 
hematopoietic reconstruction
Hematopoietic reconstruction is a meticulously orches-
trated process wherein transplanted HSPCs engraft, pro-
liferate, and differentiate into various blood cells within 
the recipients. Successful HSC engraftment is charac-
terized by the clinical recovery of myeloid (neutrophils), 
erythroid cells and megakaryocyte (platelet) lineages. 
Recovery standards include meeting hematologic criteria 
for engraftment and confirming that the hematopoietic 
cells originate from the donor, a process that typically 
spans several weeks [109]. In this context, we elucidate 
the impact of inflammasomes on hematopoiesis and 
post-transplant hematopoietic reconstruction using the 
model of “soil (bone marrow microenvironment), envi-
ronment (external interventions), and seed (HSPCs)” 
[110].

The bone marrow microenvironment comprises vari-
ous stromal cells, extracellular matrix components, 
reticular cells, other connective tissues, and multiple 
hematopoietic regulatory factors [111]. Bone marrow 
mesenchymal stem cells (BMSCs) function as self-renew-
ing precursor cells of the microenvironment, and are 
capable of differentiating into diverse stromal cells. They 
play dual roles in signal transduction and transcrip-
tional regulation supporting and repairing the microen-
vironment [112]. Research in NLRP1 knockout mouse 
transplant models revealed that the multi-lineage differ-
entiation capacity of BMSCs was impaired, with reduced 
lipid droplets and osteogenic mineralization areas 
observed microscopically. Meanwhile, the reconstruction 

of HSPCs was found to be enhanced, particularly within 
erythroid lineages [113]. Adipogenesis adversely impacts 
the hematopoietic niche by compressing the hematopoi-
etic space and suppressing hematopoietic signals [114]. 
While osteogenesis promotes the growth of hemat-
opoietic cells, it may also lead to excessive differentia-
tion, thereby inhibiting long-term hematopoiesis [112]. 
Another study revealed that Caspase-3 and NLRP3 
share similarities in regulating the balance of BMSCs 
in hematopoiesis. Deficiencies in either Caspase-3 or 
NLRP3 result in myeloid hematopoiesis characterized 
by the expansion of myeloid cells (CD11b+Gr-1+ cells), 
ultimately distorting the normal composition of hemat-
opoietic cells. This phenomenon was associated with 
a diminished secretion of hematopoietic maintenance 
factors, such as stem cell factor (SCF) and chemokine 
C–X–C motif chemokine 12 (CXCL12), which propelled 
HSPCs towards myeloid differentiation from their quies-
cent state. Interestingly, Caspase-3-deficient models indi-
rectly influenced the hematopoietic microenvironment 
by reducing NLRP3 expression with dysregulated release 
of SCF and CXCL12, rather than directly interfering 
inflammatory pathways [115]. Smoking has been identi-
fied as a detrimental factor in hematopoiesis. Cigarette 
extracts induced ROS production in MSCs, activating the 
NLRP3 pathway. Concurrently, gene expression profiles 
were modified, resulting in the upregulation of inflamma-
tion and oxidative stress-related genes and downregula-
tion of genes supportive of hematopoiesis. Collectively, 
these factors compromised hematopoietic support, as 
evidenced by the restricted expansion of CD34+CD90+ 
HSPCs and their diminished multipotency. This detri-
mental effect was alleviated by the application of ROS 
and NLRP3 inhibitors, which restored hematopoietic 
cell engraftment [116]. In the bone marrow microenvi-
ronment, a class of substances known as neuropeptides, 
including substance P (SP) and neurokinin A (NK-
A), participate in the “neuro-immune-hematopoietic” 
communication network [117]. These neuropeptides 
exhibit antagonistic effects, influencing the expression 
of HMGB1 and thereby regulating hematopoietic bal-
ance. Specifically, SP promoted hematopoiesis by inhib-
iting HMGB1, while NK-A exerted an opposing effect. 
HMGB1 had dual roles in hematopoiesis, as it regulated 
the proliferation of hematopoietic progenitor cells while 
also preventing excessive proliferation and depletion of 
HSCs, thus maintaining a balance in long-term hemat-
opoietic and immune functions. Furthermore, the effects 
of HMGB1 appeared to be lineage-dependent; its block-
ade enhances T cell subsets and NK cells while simulta-
neously reducing B cell differentiation [118].

HSPCs, as the foundational elements of hematopoie-
sis, possess the ability for self-renewal and exhibit 
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multi-directional differentiation potential [119]. Inflam-
masomes function as regulators of HSPC quantity 
and differentiation pathways. In NLRP1 knockout 
mice, a reduction in the expression of pro-inflamma-
tory cytokines IL-18 and IL-1β was noted, alongside 
decreased inflammatory infiltration in the bone mar-
row and an increase in hematopoietic cells, particularly 
red blood cells and platelets. Furthermore, the secretion 
of adhesion molecules such as VCAM-1, ICAM-1, and 
E-selectin was elevated, thereby further promoting HSPC 
proliferation, differentiation, and engraftment [113]. The 
knockout or inhibition of T-cell protein tyrosine phos-
phatase (TC-PTP), a widely expressed molecule across 
various hematopoietic lineages, enhances HSC numbers 
in both the bone marrow and peripheral blood by modu-
lating the expression of immune factors through dephos-
phorylation [120]. Notably, TC-PTP deficiency activated 
the IL-18/IL-18  bp signaling axis, which triggered the 
production of IL-12 and IFN-γ, thereby promoting rapid 
expansion of HSPCs [121]. However, another study indi-
cated that elevated IL-18 levels were associated with an 
increased risk of non-relapse mortality following trans-
plantation [122]. In terms of differentiation potential, 
inflammasomes initiated the effector protein caspase-1, 
which cleaved and degraded GATA binding protein 1 
(GATA-1), thereby impeding the development of eryth-
roid progenitors and ultimately reducing erythropoiesis. 
This suggests that artificially regulating inflammasome 
activity may present a therapeutic avenue for addressing 
rare hematopoietic imbalance disorders [123]. Similarly, 
Caspase-3/7/8 exhibited comparable phenomena in this 
context [124]. NLRP1 also regulated erythroid-myeloid 
lineage decisions in HSPCs through the phosphoryla-
tion and activation of the ZAKα/P38 axis, with inhibi-
tion of NLRP1 promoting erythroid differentiation [125]. 
Moreover, inflammasomes regulated cell fate through 
metabolic pathways that are essential for the forma-
tion of embryonic HSPCs [126]. Glucose metabolism 
in macrophages produced ROS and hypoxia-inducible 
factor 1-alpha (HIF1α), which initiated inflammasome 
activation and sustained IL-1β production. Stimulation 
of the inflammasome increased the number of multi-
lineage hematopoietic colony-forming units and T-cell 
progenitors in zebrafish embryos. Additionally, NLRP3 
suppressed erythroid differentiation during the embry-
onic stage while promoting a bias towards lymphoid and 
myeloid lineages, effectively counteracting embryonic 
hypoxia [127].

External factors, inclusive of conditioning, immune 
suppression, infections, and inflammation, primarily 
exert indirect effects by modulating of HSPCs and the 
bone marrow microenvironment. Conditioning regimes 
can deteriorate the bone marrow microenvironment, 

concomitantly increasing inflammatory infiltration. Fol-
lowing total body irradiation (TBI) preconditioning, 
there was an upregulation of various inflammasome 
components, containing NLRP1 and NLRP6, with IL-1β 
and IL-18 functioning as key mediators of inflammatory 
damage. Caspase-1 inhibitors demonstrated efficacy in 
reducing inflammation and promoting the reconstruc-
tion of megakaryocytes and other hematopoietic cells 
[128]. AIM2 detected radiation-induced dsDNA breaks, 
subsequently recruited ASC domains, and induced 
caspase-1-dependent pyroptosis in response to ion-
izing radiation-induced damage [129]. Similarly, ion-
izing radiation activated the NLRP3/caspase-1 axis in 
macrophages, resulting in the release of lactate dehy-
drogenase (LDH) and inflammatory mediators from 
membrane rupture [130]. NLRP12 played a beneficial 
role independent of inflammasomes by suppressing TNF 
and NF-κB signaling during radiation exposure and heat-
induced emergency hematopoiesis. This suppression 
diminished apoptosis in hematopoietic progenitor cells, 
bolstered the reconstruction of myeloid hematopoietic 
cells and peripheral immune function, mitigating lung 
dysfunction resulting from bacterial infections. Through-
out this process, the key components of the inflammas-
ome (caspase-1, ASC, IL-1R) remained unchanged [131]. 
GSDME, an alternative executor of pyroptosis, mediated 
HSPC swelling, blebbing, and membrane permeabili-
zation in the presence of cisplatin. GSDME deficiency 
also heightened sensitivity to apoptosis. These find-
ings underscored the role of GSDME in influencing the 
hematopoietic function of lymphoid and myeloid cells by 
regulating the balance between apoptosis and pyroptosis 
under adverse conditions [132].

The dual role of inflammasomes in GVHD
GVHD is the main complication and a leading contribu-
tor of non-relapse and transplant-related mortality in 
allogeneic HSCT, with an incidence of approximately 
50% [133]. High-dose corticosteroids, which serve as the 
first-line therapy for aGVHD, are associated with limited 
efficacy and considerable toxicity, potentially affecting 
post-transplant relapse rates and immune reconstitu-
tion. Notably, around half of patients with aGVHD dem-
onstrate a lack of response to steroid therapy, leading to 
poor outcomes and underscoring the urgent need for 
novel biomarkers and therapeutic strategies [134]. The 
pathophysiology of aGVHD can be delineated into three 
stages: the initiation phase, T-cell activation, and effector 
stages [135].

The initial stage involves tissue damage induced by con-
ditioning regimes, which acts as a catalyst for widespread 
tissue damage by releasing DAMPs, PAMPs, numer-
ous inflammatory and chemotactic factors [136]. These 
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signals upregulate the expression of major histocompat-
ibility complex (MHC) antigens, adhesion receptors, and 
other molecules on host antigen-presenting cells (APCs), 
thereby amplifying the responses of alloreactive donor 
T cells. Additionally, these danger signals can enter the 
circulatory system, resulting in systemic GVHD [137]. 
Subsequently, T cells expressing tissue-specific adhesion 
molecules and chemotactic receptors migrate towards 
and infiltrate targeted organs. The second stage is initi-
ated after activation of donor T cells by host APCs [138]. 
In response to various cytokines and environmental 
factors, CD4+ T cells can differentiate into specialized 
effector subtypes, including T helper types 1/2/17, and 
regulatory T cells [139]. Th1 cells enhance the function 
of cytotoxic T cells by secreting IFN-γ and TNF-α, and 
they are recognized as the primary subtype promoting 
GVHD. Th17 cells, which secrete IL-17, IL-21, and IL-22, 
primarily target extracellular pathogens and contribute 
to the tissue damage associated with GVHD. In contrast, 
Th2 cells regulate humoral immune responses through 
the secretion of IL-4, IL-5, and IL-13, typically playing a 
protective role that mitigates GVHD. Overall, Th2 and 
regulatory T cells (Tregs) are associated with the attenua-
tion of GVHD, while Th1 and Th17 cells are linked to the 
acceleration of its development and progression [140]. 
Altering the Th cell landscape helps the immune system 
prevent inappropriate activation. Cytotoxic effects and 
inflammatory cytokines drive the progression to the third 
stage of GVHD. Effector cells, including CD4+ T cells, 
CD8+ T cells, and NK cells, can exhibit cytotoxic effects 
through Fas-FasL, perforin/granzyme, and TNF path-
ways [141]. During this stage, various types of Th cells 
also release inflammatory cytokines, further contributing 
to the disease process.

Initiation
PAMPs, DAMPs and cytokines activate APCs, releasing 
additional alarm signals that sustain and amplify GVHD 
[137]. Koehn et al. [142] demonstrated that ATP release 
induced by conditioning regimens activated NLRP3 
through binding to the P2X7 receptor. The subsequent 
release of the inflammatory cytokine IL-1β led to dys-
function of myeloid-derived suppressor cells (MDSCs), 
compromising their anti-inflammatory efficacy in the 
microenvironment. The study also revealed that, com-
pared to localized ATP control or selective inhibition of 
P2X7 receptor and NLRP3 activity (via gene knockout 
or co-infusion of regulatory T cells to suppress MDSC 
inflammasome activity), the use of NLRP3 small mol-
ecule inhibitors combined with MDSC infusion in mice 
did not yield the anticipated results. This outcome may 
be attributed to the systemic inhibition of NLRP3 inflam-
masomes affecting other immune functions. Another 

study indicated that NLRP3 activation established a 
highly inflammatory environment, whereas NLRP3 
knockout reduced levels of IL-1β and TNF-α, decreased 
ATP release, and lowered P2X7 receptor expression 
[143]. Given the significance of P2X7 in HSCT, 16 SNPs 
in the P2X7 gene were analyzed in DNA samples from 
453 allo-HSCT donors and recipients, revealing corre-
lations between these polymorphisms and clinical out-
comes. The study identified that two loss-of-function 
P2X7 SNPs (Ile568Asn and Glu496Ala) were associated 
with higher aGVHD incidence and lower aGVHD risk, 
respectively, thus contributing to the development of 
personalized clinical prevention strategies [144]. After 
conditioning with TBI, busulfan/cyclophosphamide (BU/
CY), or fludarabine/cyclophosphamide (FLU/CY) regi-
mens, significantly elevated uric acid levels released by 
damaged cells were observed in the peritoneal cavity, 
which induced NLRP3 activation and IL-1β production. 
IL-1β further amplified inflammatory damage and pro-
moted Th17 cell differentiation to exacerbate GVHD. In 
the early stages, uricase-mediated degradation of uric 
acid mitigated NLRP3 activation and the inflammatory 
response [145]. S100A8, S100A7, and S100A9 have been 
pinpointed as inflammasome-activating molecules, spe-
cifically expressed in the saliva of GVHD patients. These 
proteins might act as endogenous TLR4 ligands, enhanc-
ing inflammasome activation while increasing neutrophil 
binding affinity and leukocyte extravasation [146]. At this 
stage, inflammasomes complete the establishment of an 
inflammatory and damaging environment, facilitating the 
activation and migration of APCs to lymph nodes, where 
they further activate donor T cells (Fig. 3A).

Activation
The highly inflammatory environment established dur-
ing the initiation phase lays foundation for subsequent 
T-cell activation. Host APCs present processed antigen 
fragments on their surfaces via HLA molecules. When 
these fragments interact with the T-cell receptor (TCR) 
domains of donor naive T cells, they rapidly stimu-
late T-cell proliferation, polarization, and the release 
of additional cytokines [147]. Inflammasomes play a 
role in modulating the behavior of APCs. For instance, 
dendritic cells (DCs) showed potently impaired migra-
tion towards inflammatory environments when lacking 
microRNA-155 in the presence of LPS and ATP chemo-
taxis. This impairment reduced inflammasome activa-
tion, subsequently inhibiting inflammatory events such 
as ERK, Caspase-1, and IL-1β activation, thereby miti-
gating the pathological manifestations of GVHD [148]. 
At this stage, inflammasomes were primarily involved 
in the differentiation of activated T cells and the subse-
quent propagation of inflammation. Caspase-11 directly 
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bound to LPS released by microbes, triggering a non-
canonical pyroptosis pathway, leading to cell rupture 
and the release of pro-inflammatory cytokine IL-1α. 
This cytokine recruited neutrophils and amplified T-cell 
proliferation. The polarization of Th1 and Th17 cells, 
along with the production of IFN-γ were also associ-
ated with Caspase-11 activation, collectively accelerat-
ing the inflammatory response [149]. Elevated levels of 
HMGB1 have been detected in the serum of patients 
with aGVHD post-transplant [150]. HMGB1 reduced 
DNA methylation of the signal transducer and activator 
of transcription 3 (STAT3) in CD4+ T cells to increase 
STAT3 mRNA levels in aGVHD patients. This process 
promoted the induction of promoting Th17 lymphocyte 
induction and inhibited Treg cell differentiation [151]. 
The choline metabolite trimethylamine N-oxide (TMAO) 
activated the NLRP3 inflammasome through initiation 
signals (NF-κB) and activation signals (mitochondrial 
ROS), promoting M1 macrophage polarization. These 
macrophages exhibited higher levels of pro-inflammatory 
cytokines (e.g., IL-1β, IL-6, TNF-α) and enhanced anti-
gen-presenting capacity, further driving Th1 and Th17 
cell polarization, culminating in intensified inflamma-
tory responses and tissue damage. The NLRP3 inhibitor 

CY-09 significantly attenuated this phenomenon [152]. 
Furthermore, CD4+ and CD8+ T cells exhibiting elevated 
levels of active caspase-1 demonstrated pronounced 
inflammatory transcriptional characteristics and a met-
abolic phenotype resembling that of myeloid immune 
cells. This phenotype was marked by the upregulation of 
pro-inflammatory cytokines and a metabolic shift from 
oxidative phosphorylation to aerobic glycolysis. Such 
metabolic reprogramming typically resulted in enhanced 
metabolic activation, similar to what was in tumor cells, 
to meet increased energy demands [153]. During this 
process, these cells also contributed to mitochondrial 
dysfunction and the release of ROS and mitochondrial 
DNA, which further activated inflammasomes and inten-
sified the vicious cycle of inflammation (Fig. 3B) [154].

Effector
In the third stage, the ongoing recruitment of both innate 
and adaptive immune cells, coupled with cytokine stim-
ulation, prompts T cells to exert their effects. The ASC 
protein, a component of the inflammasomes, serves 
as a crucial link between the “sensor” and caspase-1 
[53]. Cheong et  al. [155] have demonstrated that ASC 
harbored substantial therapeutic potential in GVHD, 

Fig. 3  Correlation between inflammasomes and HSCT. A Initially, conditioning regimens lead to extensive tissue damage throughout the body, 
triggering substantial PAMPs and DAMPs. These molecules activate inflammasomes in APCs and other cell types, amplifying inflammatory signals 
by enhancing the function of APCs. Additionally, they suppress anti-inflammatory cells and release further DAMPs. Inflammasomes also impact 
the structural integrity of intestinal cells and regulate the secretion of antimicrobial peptides. B In the second phase, donor T cells are activated 
after interacting with APCs. Inflammasomes affect the migration and antigen-presenting abilities of APCs. They also regulate T cell responses 
by promoting the maturation of CD8+ T cells and driving CD4+ T cells towards a pro-inflammatory phenotype, accelerating the progression 
of GVHD. C During the third phase, effector cells execute their functions through various molecular mechanisms. CD8+ T cells induce cell damage 
via Fas-Fas ligand (FasL), perforin/granzyme, and TNF pathways. The cytotoxic effect of CD8+ T cells is further enhanced by inflammasomes. 
Moreover, inflammasomes influence the proliferation and differentiation of CD4+ T cells and regulate the secretion of pro-inflammatory cytokines, 
contributing to the development of GVHD
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independent of inflammasome presence or the microbi-
ome. ASC deficiency reduced granzyme B secretion and 
degranulation in CD8 + T cells. This lowered cytotoxic-
ity and apoptosis, ultimately suppressing GVHD. ASC 
deficiency impaired GVL function but enough to pro-
vide antiviral protection. Inflammasomes amplified the 
function of effector cells, which in turn, activate them 
through unique mechanisms. Studies found that CTLs 
secreted perforin to create transient pores in the APC 
membrane, leading to granzyme release and ion pertur-
bations, including K+ efflux and Ca2+ influx. These dis-
turbances facilitated the maturation of NLRP3 and IL-1β, 
which activated CD4+ T cells and CTLs. The study eluci-
dated a positive feedback loop between CTLs and APCs 
in GVHD and detailed the mechanisms by which adap-
tive immunity bolstered innate immunity [156]. Moreo-
ver, IL-18, a downstream effector of inflammasomes, 
enhanced the function of effector cells. Notably, in 60% 
of aGVHD patients, IL-18 and sIL-2R levels culminated 
on day 10 post-transplant, preceding the clinical mani-
festation of GVHD (averaging day 15 post-HSCT). This 
suggested that serum IL-18 levels were valuable indica-
tors of aGVHD, potentially related to its enhancement 
of Th1 immune responses and CTL induction [157]. 
The IL-18Rα-neutralizing monoclonal antibody reduced 
inflammation by interfering with the IL-18/IL-18R inter-
action, affecting Th1, Th2, and Th17 subpopulations in 
the peripheral blood of aGVHD animal models. It also 
inhibited mitogen-activated protein kinase (MAPK) p38 
activity and Fas/FasL expression to reduce apoptosis and 
ameliorate the GVHD response [158].

Mucosa-associated invariant T cells (MAIT cells), 
innate T cells with specialized antimicrobial functions, 
are abundant in the gut [159]. During intestinal GVHD, 
MAIT cells recognized gut bacterial metabolites (e.g., 
riboflavin) presented by MHC class I-related protein 1 
via their TCR and rapidly migrated to the damaged area. 
Upon activation, MAIT cells proliferated in response 
to gut flora through the MR1/TCR-dependent pathway 
involving CD3/CD28, as well as through cytokines via 
the non-TCR-dependent pathway, including IL-12 and 
IL-18. Under TCR signaling, MAIT cells secreted more 
IL-17 to inhibit inflammation and limit CD4+ T cell 
proliferation. This phenotype shift under IL-12/IL-18 
stimulation leads to the secretion of higher amounts of 
granzyme B, TNF-α, and IFN-γ. This change promotes 
the expression of additional cytotoxic factors in mature 
subsets, thereby balancing the GVHD promotion with 
GVL effects (Fig. 3C) [160].

Double‑edged sword
The gastrointestinal tract is one of the most prevalent 
and lethal sites afflicted by aGVHD [161]. NLRP6 plays 

a double-edged sword role in maintaining gut homeosta-
sis. On the positive side, it effectively sustains the balance 
and diversity of the intestinal flora, thereby preserving 
intestinal integrity through the regulation of inflamma-
tory pathways. By negatively regulating ZAP-70 signaling 
in donor T cells, NLRP6 alleviated the severity of GVHD. 
ZAP-70, an essential cytoplasmic tyrosine kinase, pro-
motes T cell proliferation and differentiation through 
phosphorylation after binding with the TCR [162]. In 
mouse models, the absence of NLRP6 increased CD4+ 
T cell proliferation, inhibited apoptosis and promoted 
pro-inflammatory Th1 cell differentiation by enhancing 
ZAP-70 phosphorylation. In contrast to the wild-type 
cells, NLRP6 deficiency did not influence CD8+ T cell 
cytotoxicity or Treg suppression, indicating that NLRP6 
reduces the severity of GVHD while preserving effective 
GVL responses [163]. NLRP6 played a protective role in 
the early stages following HSCT. Its absence promoted 
caspase-3-mediated apoptosis, leading to intestinal epi-
thelial cell death, reduced expression of the tight junction 
protein occludin, loss of goblet cells, and decreased lev-
els of antimicrobial peptides Reg3γ and Pla2g2a. NLRP6 
deficiency also exacerbated inflammation, as evidenced 
by elevated inflammatory markers, including CD11b 
and myeloperoxidase, as well as an increased infiltra-
tion of inflammatory cells, such as macrophages, DCs, 
and neutrophils, within the intestinal [164]. Intriguingly, 
a recent study offered a new perspective, suggesting that 
NLRP6 deficiency also triggered compensatory inflam-
masome activity by activating NLRP3 and other inflam-
matory pathways. The loss of NLRP6 negatively regulated 
both the NF-κB and MAPK p38 signaling pathways. 
In NLRP6-deficient mice, significant increases in the 
expression levels of NLRP3, pro-caspase-1, p20, IL-1β, 
and IL-18, accompanied by more severe liver damage, 
inflammatory cell infiltration, and liver fibrosis. It was 
hypothesized that while NLRP6 activation resulted in the 
release of moderate levels of IL-1β to eliminate patho-
gens, NLRP6 deficiency led to excessive NLRP3 activa-
tion, thereby causing liver damage due to an intensified 
inflammatory response [165]. Paradoxically, some studies 
have reported opposing findings, indicating that NLRP6 
deficiency in non-hematopoietic tissues mitigated the 
severity of aGVHD, particularly in the gastrointestinal 
tract, leading to reduced tissue damage and improved 
survival rates. This effect might be attributed to the 
expression of specific pro-inflammatory factors, activa-
tion of immune cells, and the regulation of the gut barrier 
(e.g., goblet cells, mucin-2, and tight junction proteins) 
which operated independently of microbiome regulation 
[166, 167].

Additionally, NLRP3, previously regarded as a posi-
tive regulator of GVHD, has been found to have a 
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protective role in non-hematopoietic tissues, particularly 
in intestinal epithelial cells. G protein-coupled receptors 
(GPR109A, GPR43, and GPR41) serve as microbial sen-
sors that are essential for maintaining gut homeostasis 
and safeguarding gut barrier function [168]. Short-chain 
fatty acids (SCFAs), the bacterial metabolites, acted 
as ligands for these receptors and moderately activate 
NLRP3 in non-hematopoietic tissues through extracel-
lular signal-regulated kinase (ERK) phosphorylation. This 
activation increased the secretion of the gut-protective 
factor IL-18, thereby supporting epithelial stability [169]. 
Moreover, SCFAs promoted the production of Tregs, 
contributing to regulatory and immunosuppressive 
effects. Nonetheless, this protective mechanism was dis-
rupted when gut symbiotic bacteria were inhibited by the 
administration of broad-spectrum antibiotics [170].

Exacerbation of other post‑transplant complications
Infection ranks as one of the leading causes of death fol-
lowing HSCT, primarily due to the severe immunodefi-
ciency [171]. Immunosuppression or immune deficiency 
renders patients susceptible to pathogenic infections 
[172]. During the pre-engraftment phase, which spans 
from conditioning until 30 days post-HSCT, patients 
experience severe immunosuppression characterized by 
neutropenia, mucosal damage, and catheter-related risks. 
The most common pathogens during this period are bac-
teria, particularly those causing sepsis from gram-posi-
tive bacteria, as well as fungal infections (e.g., Candida 
and Aspergillus) and viral infections (e.g., herpes sim-
plex virus). The early post-engraftment stage, occurring 
between 30 and 100 days post-transplant, is primarily 
marked by cellular immune deficiency. Common infec-
tions during this phase include those caused by bacterial 
pathogens (notably gram-negative bacteria), viral infec-
tions (such as Cytomegalovirus), and fungal infections 
(e.g., Aspergillus). In the late post-engraftment stage, 
which extends beyond 100 days, the immune system 
gradually recovers, but the main infection risks include 
invasive fungal infections (e.g., Cryptococcus), viral reac-
tivation (e.g., cytomegalovirus, varicella-zoster virus), 
and Epstein-Barr virus-associated lymphoproliferative 
disorders [173, 174]. Despite the limited research on the 
interplay between infectious factors and inflammasomes 
during HSCT, it is plausible that inflammasomes, as sen-
tinels of innate immunity, play a crucial role at different 
stages of transplantation [12]. Pathogens, including bac-
teria, fungi, viruses, and parasites, are recognized by host 
cells through their cell wall components, DNA, and met-
abolic products, which then activate inflammasomes. The 
extent of activation varies based on the environment and 
infectious agents involved. For instance, human dsDNA 
viruses, such as cytomegalovirus, activated the AIM2 

inflammasome, associated with higher cell death rates 
due to the release of IL-18 and IL-1β. AIM2 also inter-
feres with the transcription of early and late viral genes 
(UL54 and UL83), inhibiting viral replication and pro-
moting cell death to curb viral spread [175]. Studies have 
demonstrated that virulent strains of HSV-1 increased 
the expression of NLRP3, NLRP12, and IFI16 inflammas-
omes. More virulent HSV-1 strains elicited activation of 
inflammasomes, resulting in a significant accumulation 
of inflammatory monocytes and neutrophils, which exac-
erbated disease severity. Notably, this phenomenon was 
exclusively observed in HSV-positive cells [176]. In HSV-
1-infected microglial cells, the NLRP3 inflammasome 
triggered Gasdermin D-dependent pyroptosis, where 
the formation of membrane pores promoted the release 
of cellular contents and exacerbated tissue damage [177]. 
Among fungal infections, Candida albicans is recognized 
as one of the most commonly invasive species in HSCT. 
The transition of yeast cells to the hyphal form was a 
critical trigger for NLRP3 inflammasome activation. The 
hyphal form secreted Candidalysin, which damaged the 
cell membrane and directly activated the NLRP3 inflam-
masome, leading to the maturation of IL-1β and poten-
tially limiting the invasion of Candida albicans in the 
host, possibly by disrupting K+ balance [178]. In a model 
of acute lung injury mediated by Pseudomonas aerugi-
nosa in HSCT, elevated levels of prostaglandin E2 (PGE2) 
led to increased IL-1β, which depends on the activation 
of cAMP response element-binding protein (CREB) tran-
scription factor through cAMP mediated by EP2 and EP4 
signaling [179]. The production of IL-1β was associated 
with the activation of caspase-1 in the canonical path-
way and caspase-8 in the alternative pathway. Addition-
ally, PGE2 inhibited the activation of autophagosomes 
LC3 and p62. The combined effect of IL-1β production 
and limited autophagic protection collaborated to inflict 
lung damage after infection, which was mitigated by the 
PGE2 inhibitor indomethacin [180]. Some pathogens 
have evolved mechanisms to evade host detection [181]. 
The pathogenic yeast Candida albicans evaded mac-
rophages by inducing NLRP3 inflammasome-depend-
ent pyroptosis, which caused candida lysin-dependent 
membrane perforation or hyphal membrane piercing. 
The GSDMD inhibitor Necrosulfonamide effectively 
mitigated the escape of Candida albicans and alleviated 
infection symptoms without interfering with caspase-1 
cleavage activity [182]. In summary, moderate inflamma-
some activation can restrict pathogen infection, whereas 
excessive activation may initiate an inflammatory cascade 
that clears pathogens while simultaneously causing tissue 
damage.

In addition to GVHD and infections, inflammasomes 
also contribute to other post-transplant complications. 
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Pre-transplant conditioning regimens can lead to severe 
hepatic complications. A cohort study involving pedi-
atric patients who underwent allogeneic HSCT found a 
significant association between the donor’s IL-1β−511 
TT genotype and the cumulative incidence of grade III-
IV hepatic veno-occlusive disease (VOD) within three 
months post-transplant, with rates of 25 ± 13.1% for the 
TT genotype compared to 2.9 ± 2.9% and 3.6 ± 3.6% for 
the CT and CC genotypes, respectively (P = 0.024) [183]. 
Increased expression of NLRP3 in the liver was observed 
in hepatitis following Bu/Cy treatment, resulting in 
heightened inflammatory infiltration. Pharmacological 
NLRP3 inhibitors, such as BAN11-7082, showed poten-
tial in reversing this damage and restoring liver function 
[184]. Disseminated intravascular coagulation (DIC) fol-
lowing transplantation is a relatively rare complication. 
In a study of 12 patients administered with recombinant 
human soluble thrombomodulin (rhTM), rhTM was 
found to reduce levels of fibrinogen degradation prod-
ucts, C-reactive protein, and HMGB1. The mechanism 
might involve rhTM binding to HMGB1 DNA-binding 
proteins via its N-terminal lectin-like domain, which 
inhibited the release of HMGB1, thereby preventing the 
inflammatory cascade and protecting vascular endothe-
lial cells [185]. Engraftment syndrome (ES) is a clinical 
syndrome that arises during neutrophil recovery [186]. A 
comparison of plasma samples from 56 pediatric patients 
across three groups, including ES, aGVHD, and a com-
bination of both, revealed that those with isolated ES 
exhibited significantly elevated levels of pro-inflamma-
tory cytokines (IL-1β, IL-6, and IL-12). Notably, the lev-
els of IL-1β and IL-12 were significantly increased, with 
IL-1β showing a more pronounced rise compared to 
those with aGVHD [187]. However, discordant findings 
from another study [188] highlighted the necessity for 
cautious interpretation of these results.

Therapeutic targeting of inflammasomes 
in the transplantation process
Given the significance of inflammasomes in HSCT and 
their intricate molecular mechanisms for detecting and 
countering danger signals through precise and coordi-
nated assembly, various strategies targeting inflammas-
omes have shown considerable therapeutic potential 
in animal models [189]. These strategies are especially 
promising for preventing GVHD while preserving GVL 
effects (Table 1).

Numerous studies have focused on targeting the 
NLRP3 inflammasome through its dual-signal pathway. 
In a liver injury model induced by BU/CY conditioning, 
the administration of the NLRP3 inhibitor BAN11-7082 
after HSCT selectively inhibited IκB-α phosphoryla-
tion and blocked NF-κB release, consequently reducing 

levels of IL-1β, IL-18, and neutrophil infiltration in liver 
tissue and ultimately protecting liver function [184]. 
Berberine, a traditional Chinese medicine utilized for 
gastrointestinal diseases, has been shown to inhibit the 
TLR4 signaling pathway and suppress the transmission 
of the priming signal of NLRP3, effectively reducing the 
severity of GVHD in the lungs, liver, and colon. Notably, 
it reversed the impairment of tight junction proteins in 
the mouse colon and augmented the abundance of ben-
eficial bacteria [190]. The P2X7 receptor, a ligand-gated 
ion channel that responds to ATP stimulation, facilitates 
K+ efflux, thereby activating the second signal of NLRP3 
[191]. Brilliant Blue G, a P2X7 receptor inhibitor, inhib-
ited NLRP3 activation and reduced macrophage and neu-
trophil infiltration, with inflammatory mediators such as 
CXCL8 and CCL2 in peripheral blood decreased, thereby 
improving liver function compared to untreated mice 
[192]. Antagomir-155, an inhibitor of microRNA-155, 
regulates multiple aspects of both innate and adaptive 
immune responses [193]. Inhibition of miR-155 was 
reported to decrease the expression of purinergic recep-
tors in DCs, which reduced sensitivity to LPS and ATP 
stimulation, weakened ERK activation, and decreased 
inflammatory tendencies of DCs, further inhibiting 
NLRP3 activation [148].

In addition to the broad-spectrum inhibition of 
NLRP3, targeting its downstream activator protein, cas-
pase-1, provides greater specificity. The caspase-1 spe-
cific inhibitor Ac-YVAD-cmk effectively suppressed the 
infiltration of macrophages and neutrophils, as well as 
the production of chemokines. Furthermore, it facilitated 
hematopoietic reconstruction, leading to an increase in 
megakaryocytes and platelets observed in post-trans-
plant models [128]. Another study demonstrated that 
Ac-YVAD-cmk mitigated pathological damage and 
inflammation in the liver, lungs, and colon by modulating 
the Th1/Th17/Treg balance and reducing their charac-
teristic pro-inflammatory states. Specifically, it inhibited 
Th1/Th17 differentiation and promoted Tregs, thereby 
alleviating damage caused by T cells activation in GVHD 
[194].

Regulating the expression of downstream inflamma-
tory effectors presents significant therapeutic potential. 
Antibodies that target IL-18Rα inhibited the interaction 
between IL-18 and its receptor, thereby affecting the lev-
els of Th1, Th2, and Th17 subpopulations. Specifically, 
this intervention reduces Th1 and Th17 cell expression 
while enhancing anti-inflammatory effects. Addition-
ally, these antibodies decreased the expression levels of 
apoptosis-related molecules such as Fas and FasL, as well 
as the phosphorylation of MAPK p38, which collectively 
reduced apoptosis and contributed to the preservation of 
organ function [158]. Although IL-18 might exert more 
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adverse effects in GVHD treatment, its combination with 
other cytokines to pre-activate NK cells in vitro prior to 
in  vivo administration demonstrated remarkable thera-
peutic potential. This cytokine cocktail therapy encom-
passed two strategies: the IL-12/15/18 and the IL-12/18 
methods, both of which pre-activated and matured NK 
cells with persistent memory retention. NK cells did not 
directly kill activated T cells or inhibit APCs, instead, 
they produced IFN-γ and other anti-inflammatory fac-
tors, effectively preserving GVL effects. Compared to 
the IL-12/15/18 method, the IL-12/18 approach offered 
greater advantages in cell activation, proliferation, and 
retention. Additionally, IL-12/18 demonstrated sustained 
beneficial effects in mild aGVHD, indicating enhanced 
safety [195, 196]. The study revealed that IL-1β, origi-
nated from the activation of NLRP3 in intestinal cells, 
acted on the IL-1 receptors of DCs, CD4+ T cells, and 

CD8+ T cells. Anakinra, an IL-1 receptor antagonist (IL-
1Ra) inhibitor, influenced the polarization of Th17 cells, 
ultimately improving the survival rate of mice in the early 
stages of aGVHD [145]. However, a randomized clinical 
trial displayed that blockade of IL-1 using IL-1Ra during 
conditioning was not sufficient to reduce GVHD or to 
improve survival [197].

Other classic upstream inflammasome mediators, 
including HMGB1 and MyD88, also exhibit excellent 
inhibitory potential. NecroX-7 inhibited HMGB1 secre-
tion and TLR4 expression in a dose-dependent manner 
by suppressing mitochondrial ROS and protein kinase C 
(PKC) pathways, which further modulated the Th1/Treg 
ratio, reducing inflammatory responses [198]. MyD88, 
a critical adapter in innate immune signal transduction, 
transmits signals from TLR and IL-1R family receptors 
by recruiting interleukin-1 receptor-associated kinase 4 

Table 1  Mechanisms of targeting inflammasomes in HSCT

Targets Agents HSCT Model Mechanism Ref.

NLRP3 MCC950 Human HSPCs 1. Decreased the expression of NLRP3, IL-1β, and caspase-1
2. Restored the HSPC-supporting ability of MSCs

 [116]

NLRP3 BAN11-7082 BU/CY-treated mice 1. Attenuated infiltration of neutrophils and macrophages
2. Decreased the expression of IL-1β, IL-18, and caspase-1

 [184]

NLRP3 Antagomir-155 aGVHD mice 1. Reduced the expression of P2X7, ERK, NLRP3, caspase-1, IL-1β
2. Weakened the migration ability of DCs

 [148]

NLRP3 Brilliant blue G aGVHD mice 1. Attenuated infiltration of neutrophils and macrophages
2. Reduced levels of CXCL8 and CCL2
3. Reduced the expression of IL-1β, IL-18, caspase-1, NLRP3 and P2X7

 [192]

NLRP3 Berberine aGVHD mice 1. Suppressed the expression of TLR4, NLRP3, IL-1β, IL-18, IFN-γ, TNF-α, MCP-1 
and IL-6
2. Reversed the colonic tight junction proteins reduction and colonic barrier 
degradation
3. Renovated the abundances of genus Adlercreutzia, Dorea, Sutterella and Ple-
siomonas and increased the abundances of Lactobacillus

 [190]

NLRP3 CY-09 aGVHD mice 1. Suppressed the expression of NLRP3, caspase-1
2. Attenuated mRNA expression of M1 signature cytokines or chemokines 
including IL-1β, IL-6, TNF-α, CXCL9 and CXCL10

 [152]

Caspase-1 AcYVAD-cmk TBI-treated mice 1. Attenuated infiltration of neutrophils and macrophages
2. Reduced levels of CXCL8 and CCL2
3. Accelerated hematopoietic reconstitution of platelets

 [128]

Caspase-1 AcYVAD-cmk aGVHD mice 1. Inhibited the differentiation of Th1 and Th17 cells and promoted the differen-
tiation of Treg cells
2. Decreased the expression of IL-1β, IL-18, and HMGB1

 [194]

IL-18 Anti-IL-18Rα mAb aGVHD mice 1. Interfered Th1, Th2 and Th17 subsets
2. Decreased IL-18, apoptosis-associated molecules (Fas and FasL) and phos-
phorylation levels of MAPK p38

 [158]

IL-18 IL-12/18- 
and IL-12/15/18-preac-
tivated NK cells

aGVHD mice 1. Mediated stronger GVL effect
2. Mitigated cytotoxicity of NK cells
3. Reduced CD4+ and CD8+ T cells, as well as Th1 and Tc1 cells

 [195, 196]

IL-1β Anakinra aGVHD mice 1. Suppressed Th17 polarization  [145]

HMGB1 NecroX-7 aGVHD mice 1. Decreased the infiltration of lymphocyte
2. Inhibited the HMGB1–induced allogeneic T cell proliferation
3. Inhibited HMGB1 secretion by suppressing the mitochondrial ROS and PKC 
pathways

 [198]

IRAK4 PF-06650833 aGVHD mice 1. Suppressed T-cell production of IFN-γ
2. Impaired differentiation toward Th1, Tc1, and Th17

 [199]
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(IRAK4) to activate the NF-κB pathway and inflammas-
omes. The IRAK4 inhibitor PF-06650833 suppressed 
MyD88’s function, inhibiting the differentiation of pro-
inflammatory cells (Th1, Th17, and Tc1) in GVHD, while 
sparing the differentiation of anti-inflammatory cells 
(Th2 and Tregs) [199].

Remarkably, despite the promising anti-GVHD poten-
tial of targeting NLRP3 and its downstream proteins, 
NLRP3 remains essential for HSC mobilization and hom-
ing. Current mobilization protocols still encounter a 40% 
non-responsiveness rate, and the side effects of mobiliz-
ing agents emphasize the urgency for gentler and more 
effective alternatives [200]. Similar to adjuvant function, 
strategies such as the combination of ATP with G-CSF or 
AMD3100 [201], or activating P2X4 and P2X7 receptors 
to elicit sufficient ATP for initiating NLRP3 activation 
signals [202, 203], presenting potential avenues. Addi-
tionally, the utilization of potent NLRP3 activators like 
Nigericin to rapidly alter the ionic environment of cells 
to activate NLRP3 [95], or inhibiting adenosine and its 
effectors (e.g., HO-1 and iNOS) to eliminate their inhibi-
tory effects on NLRP3, are also viable strategies [87]. 
However, it has been found that reducing HO-1 expres-
sion increased the motility and migration of leukemia 
cells [204], further underlining the intricate and multifac-
eted nature of inflammasome regulation.

Conclusion and perspective
The multifaceted regulation of inflammasomes plays 
a pivotal role in innate immunity and inflammatory 
responses, making them promising therapeutic targets 
in HSCT. Inflammasomes are intricately involved in the 
mobilization, hematopoietic function, and complications 
related to transplantation, highlighting their significant 
potential in HSCT treatment.

However, numerous challenging issues remain to be 
addressed. For instance, the interplay between micro-
biota, their metabolites, and inflammasome signaling in 
GVHD warrants further exploration. In the context of 
chronic inflammation, sustained and recurrent activation 
of inflammasomes can lead to long-term tissue damage 
and fibrosis, highlighting the importance of analyzing 
their role in chronic graft-versus-host disease (cGVHD). 
Furthermore, immune reconstitution, infection, relapse, 
and human leukocyte antigen (HLA) matching are criti-
cal areas that require additional investigation, particu-
larly concerning the unresolved challenges associated 
with infections. Relapse continues to be a prominent 
cause of HSCT failure, influenced by factors such as the 
regrowth of minimal residual disease, clonal evolution, 
and immune evasion [205]. Notably, specific NLRP3 acti-
vation features in MDSCs have been identified as poten-
tial early indicators of relapse [206]. Continued research 

into the mechanisms of relapse, aimed at developing 
clinical biomarkers, represents a promising direction. 
However, most current studies are limited to in  vivo or 
in vitro experiments, with a notable lack of epidemiologi-
cal cohort studies to validate findings in human popula-
tions, thereby limiting their persuasiveness.

Over the forthcoming decade, the pharmacological and 
genetic modulation of inflammasome activation or inhi-
bition for preventive and therapeutic purposes are poised 
to become a key focus of research [189]. In the domain of 
HSCT research, many drugs remain experimental, with 
limited studies on dosage optimization, drug structure 
refinement, and side effects. Consequently, multicenter, 
large-scale, prospective, randomized controlled trials are 
imperative. Limited awareness of the diversity of thera-
peutic agents hampers the application of rich molecular 
scaffolds. Given the safety and broad biological activity 
of phytochemicals, future research may yield valuable 
insights into these potential drugs [207]. Moreover, the 
dual-targeting nature of inflammasomes must be consid-
ered seriously, particularly regarding the optimal timing 
and method of administration.

In summary, exploring the intricate interplay between 
HSCT and inflammasome activation will enhance our 
understanding of HSCT mechanisms and facilitate the 
development of improved therapeutic and management 
strategies.
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