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all dialysis and 9% of kidney replacement therapies [3, 4]. 
Nonetheless, peritoneal fibrosis (PF) poses a formidable 
challenge for the widespread clinical application of PD. 
PF is one of the pathological changes occurring gradu-
ally in the peritoneum due to chronic inflammation and 
infection, and it is also one of the primary causes of PD 
technique failure, being responsible for 30% of such fail-
ures [5–7]. The 3-year PD technique survival rates range 
from 29 to 91% worldwide [4, 8, 9]. During long-term 
PD treatment, the progression of peritoneal fibrosis is 
closely linked to PD technique failure, reduced patient 
survival, and the development of other complications 
[10, 11]. Effective interventions to prevent PF progression 

Introduction
Currently, there are 697.5  million patients with chronic 
kidney disease worldwide [1], with over 2.5  million 
receiving renal replacement therapy [2]. Globally, perito-
neal dialysis (PD) is the primary treatment for end-stage 
renal disease (ESRD), constituting approximately 11% of 
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Abstract
Peritoneal dialysis (PD) is considered a life-saving treatment for end-stage renal disease. However, prolonged PD 
use can lead to the development of peritoneal fibrosis (PF), diminishing its efficacy. Peritoneal mesothelial cells 
(PMCs) are key initiators of PF when they become damaged. Exposure to high glucose-based peritoneal dialysis 
fluids (PDFs) contributes to PF development by directly affecting highly metabolically active PMCs. Recent research 
indicates that PMCs undergo metabolic reprogramming when exposed to high-glucose PDFs, including enhanced 
glycolysis, impaired oxidative phosphorylation, abnormal lipid metabolism, and mitochondrial dysfunction. 
Although this metabolic transition temporarily compensates for the cellular damage and maintains energy levels, 
its long-term impact on peritoneal tissue is concerning. Multiple studies have identified a close association 
between this shift in energy metabolism and PF, and may promote the progression of PF through various 
molecular mechanisms. This review explores recent findings regarding the role and mechanism of PMC metabolic 
reprogramming in PF progression. Moreover, it provides a summary of potential therapeutic strategies aimed at 
various metabolic processes, including glucose metabolism, lipid metabolism, and mitochondrial function. The 
review establishes that targeting metabolic reprogramming in PMCs may be a novel strategy for preventing and 
treating PD-associated fibrosis.
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are lacking, highlighting the necessity to investigate the 
mechanisms underlying PF.

Glucose containing peritoneal dialysis fluid (PDF)-
mediated PF is a key factor limiting PD efficacy [12–14]. 
High-glucose PDFs create an osmotic gradient that 
facilitates water and solute removal from the peritoneal 
cavity. The biological incompatibility of high-glucose 
PDFs involves factors, such as elevated osmolarity (10–
50 times greater than serum) [7], glucose degradation 
product formation during heat sterilization [15], and 
advanced glycation end product (AGE) production in 
the peritoneal cavity [7, 16]. High-glucose-induced PF 
is commonly associated with metabolic abnormalities, 
inducing a diabetes-like condition within the peritoneal 
cavity [17]. However, the metabolic mechanisms underly-
ing PF remain unclear.

Peritoneal mesothelial cells (PMCs), the first line of 
defense on the peritoneum surface, are crucial for peri-
toneum defense and function during PD, thereby main-
taining homeostasis, managing fluid transport, being 
involved in tissue repair, and responding to immune 
challenges [6, 18–20]. Highly metabolically active PMCs 
undergo considerable metabolic alterations during pro-
longed PD to maintain peritoneal homeostasis [21]. 
Prolonged PD exposure to high-glucose solutions alters 
PMC metabolism, characterized by hyperglycolysis, 

ultimately resulting in PF [22]. This exposure also causes 
PMC injury and mesothelial-mesenchymal transition 
(MMT) by triggering mitochondrial dysfunction and 
oxidative stress [23, 24]. Such changes compromise peri-
toneal integrity and function, making PMC metabolic 
reprogramming a central factor in PD-related fibrosis.

Metabolic alterations in PMCs are pivotal for deter-
mining the prognosis of patients undergoing PD. The 
structural and functional modifications induced by long-
term PD are intricately associated with the metabolic 
activities of PMCs [25]. High - glucose PDFs can cause 
mesothelial cell dysfunction and induce MMT, initiate 
and accelerate PF, and affect the patient’s technical sur-
vival rate and long - term prognosis [26]. Moreover, the 
metabolic activities of PMCs are linked to the perito-
neal inflammatory response [27, 28]. This inflammatory 
response not only compromises peritoneal integrity but 
also affects systemic inflammation and patient prognosis 
[29]. Additionally, high-glucose PDFs can lead to abnor-
mal lipid metabolism, further impacting PMC function 
and the patient’s overall metabolic state [30]. In conclu-
sion, a comprehensive understanding of the mechanisms 
underlying metabolic changes in PMCs is crucial for the 
development of new treatment strategies.

Recent studies have focused on the pathological and 
physiological mechanisms of metabolic reprogramming 
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in PMCs and their role in promoting PD-related fibrosis. 
This review highlights the potential of targeting meta-
bolic reprogramming as a novel approach to delay PF 
progression, offering new therapeutic strategies for pre-
venting and treating PD-related fibrosis (Table 1).

Metabolic reprogramming and PF progression
Metabolic reprogramming, a mechanism wherein cells 
alter their metabolic patterns to support proliferation, 
growth, and energy demands, is a hallmark of cancer [31, 
32]. While most cells generate energy primarily through 
oxidative phosphorylation (OXPHOS), tumor cells pref-
erentially utilize glycolysis to produce adenosine tri-
phosphate (ATP) even in oxygen-rich environments, a 
phenomenon known as the Warburg effect [33]. How-
ever, metabolic reprogramming occurs in non-tumor 
cells following genetic and environmental changes [34, 
35]. Substantial alterations in the intracellular metabolic 
pool often accompany metabolic reprogramming [36]. 
This cellular adaptation helps cells resist external stress 
and acquire new functions. Moreover, it is intricately 
linked to the onset and progression of diseases.

A recent randomized controlled trial found that 
patients with ESRD undergoing PD exhibited substan-
tial metabolic disturbances, which were associated with 
adverse clinical outcomes [37]. PD techniques have faced 
considerable limitations owing to the development of 
high-glucose PDFs-mediated PF and ultrafiltration fail-
ure. Exposure to high-glucose PDFs is closely linked to 
metabolic disorders [38, 39], inflammatory responses [6], 
activation of the renin-angiotensin system (RAS) [40], 
and angiogenesis in the peritoneum [41, 42]. These fac-
tors contribute to PMC damage, death, apoptosis, and 
MMT, resulting in the promotion of PF and even adverse 
outcomes [13, 17]. Thus, glucose-containing PDFs-
induced metabolic reprogramming may substantially 
affect peritoneal pathophysiology.

Two key mechanisms underlie high-glucose PDFs-
induced fibrosis: the production of AGE, accompanied by 
a decrease in the ultrafiltration osmotic pressure gradient 
due to heightened expression of glucose transporter type 
1 (GLUT-1), and an increase in the nicotinamide adenine 
dinucleotide (NADH)/nicotinamide adenine dinucleotide 
(NAD+) ratio (NADH/NAD+), causing a pseudohypoxia 
state in peritoneal tissues and cells [22, 43]. These con-
ditions can lead to peritoneal damage and subsequent 
fibrosis. High-glucose PDF-induced PF is closely associ-
ated with metabolic disorders, including abnormal gly-
colysis, mitochondrial dysfunction, impaired OXPHOS, 
and disrupted lipid homeostasis [22, 39, 44, 45]. In sum-
mary, prolonged exposure to high-glucose PDFs induces 
metabolic reprogramming and promotes PF progression, 
highlighting the important role of metabolism in PD-
related fibrosis (Fig. 1).

Metabolism reprogramming in PMCs during PD
Glucose metabolism
During long-term PD treatment, PMCs undergo substan-
tial alterations [46], such as metabolic reprogramming in 
response to stimulation by glucose-based PDFs, charac-
terized by increased activation of glycolytic and polyol 
pathways, alongside OXPHOS inhibition [21, 24, 47, 48]. 
Prolonged maintenance of PMCs in this abnormal meta-
bolic state increases energy demand and drives abnormal 
biological responses, including changes in cell phenotype, 
proliferation, apoptosis, and senescence [21, 48]. Thus, 
the metabolic reprogramming of PMCs is an important 
cellular process that mediates PD-related fibrosis.

Glycolysis
Glycolysis, a relatively inefficient anaerobic pathway 
used for the production of ATP, converts glucose into 
various products such as pyruvate and lactate. During 
long-term PD treatment, PMCs undergo a marked shift 
in glucose metabolism toward glycolysis [21, 48, 49]. 
Increased glycolysis in PMCs, stimulated by high glu-
cose levels, elevates the NADH/NAD + ratio and lactate 
levels, resulting in the formation of a hypoxic intracel-
lular environment [13, 47]. This pseudohypoxic environ-
ment induces pathological changes in PMCs including 
cell damage, apoptosis, and senescence [7, 22, 50]. The 
pseudohypoxia hypothesis is based on two primary fac-
tors. First, the excessive intracellular lactate concentra-
tions impair lactate dehydrogenase function, disrupting 
normal intracellular and NADH/NAD + compensatory 
mechanisms for hypoxia in the tricarboxylic acid (TCA) 
cycle [51]. Second, activation of the intracellular expres-
sion of hypoxia-inducible factor-1 (HIF-1) induces 
chronic injury in PMCs [43], leading to the secretion of 
various pro-fibrotic and angiogenic factors that impair 
organ function [43, 52, 53].

PMCs undergo glucose metabolic reprogramming to 
reduce oxidative metabolism, promote ATP produc-
tion, and enhance cell survival [48]. This reprogramming 
involves inhibiting OXPHOS via the GLUT-1 pathway 
and enhancing glycolysis by upregulating essential gly-
colysis genes, corresponding enzymes, and glucose trans-
porter proteins [13, 48]. Excessive glycolysis caused by 
high glucose levels can damage PMCs through several 
alternative pathways. For example, hyperglycolysis in 
PMCs activates the NLRP3 inflammasome, leading to 
PF development [ 54]. Moreover, inhibiting glycolysis in 
the context of high-glucose PDFs reduces transforming 
growth factor beta 1 (TGF-β1)-induced cellular MMT 
and PF in mice [48]. While brief periods of mild hypoxia 
may enhance cell survival and recovery, prolonged expo-
sure to hypoxia can result in cell damage and death 
[44]. Thus, the compensatory reprogramming of glu-
cose metabolism in PMCs due to long-term exposure to 
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Targeting 
strategies

Drugs/ 
compounds

Targeting protein Animal/cell models Mechanism/Intervention effects Refer-
ences

Glucose 
absorption

Empagliflozin SGLT-2 An acute PD model of rats and an 
in vitro model of primary HPMCs

Suppressing SGLT-2 activity and inhibit-
ing glucose uptake

 [99]

Empagliflozin SGLT-2 A rat PF model and a cell model 
(HMrSV5 cell line) induced by 
high-glucose PDFs

Suppressing SGLT-2 activity, inhibiting 
TGF-β/Smad signaling, and ameliorat-
ing peritoneal fibrosis

 [101]

Canagliflozin SGLT-2 A rat PF model induced by 
HG-PDFs and an in vitro model 
(HMrSV5 cell line) induced by high 
glucose

Ameliorating glucose-mediated peri-
toneal hypoxia, peritoneal fibrosis, and 
peritoneal thickening

 [52]

Phloretin SGLT-1 and SGLT-2 A PD model of rats Inhibiting glucose uptake and improv-
ing ultrafiltration

 [156]

Sitagliptin DPP4 A chlorhexidine gluconate (CG)-
induced PF model of rats

Reversing the MMT process, angiogen-
esis, oxidative stress, and inflammation

 [112]

Exendin-4 GLP-1R A CG-induced PF model of rats Suppressing DPP-4 activity, the TGF/
Smad3 pathway, the NF-κB pathway, 
and MMT

 [112]

Glycolysis 2-deoxyglucose 
(2-DG)

Glycolytic enzymes A mouse PF model induced by 
high-glucose PDFs and an in 
vitro model (primary HPMC and 
MeT-5 A cell line) induced by 
TGF-β1

Blocking hyperglycolysis, MMT, and the 
development of peritoneal fibrosis

 [48]

microRNA (miR-
26a, miR-21a, 
miR-200a)

Glycolytic enzymes A mouse PF model induced 
by high-glucose PDFs and a 
cell model (primary HPMC and 
MeT-5 A cell line) induced by 
TGF-β1

Suppressing hyperglycolysis, MMT, and 
fibrogenesis

 [48]

The polyol 
pathway

Zopolrestat Aldose reductase (AR) A chronic PD model of rats Decreasing fibrosis and angiogenesis 
during chronic peritoneal exposure

 [61]

Sorbinil and so-
dium pyruvate

TGF-β1 and MCP-1  A primary HPMC model induced 
by HG

Reducing sorbitol accumulation and 
hyperosmolality, and preventing peri-
toneal membrane damage

 [62]

Lipid deposition Simvastatin RhoA and Rac1 A high glucose-based PDFs in-
duced PD model of rats and an in 
vitro model of primary HPMCs

Inhibited MMT changes  [124]

Fluvastatin SGK1 An in vitro model of cultured 
HPMC induced by high-glucose 
PDFs

Decreasing the expression of SGK1 
and fibronectin, and meliorating the 
progression of PF

 [157]

Rapamycin LDLr A mouse PD model and a cultured 
HPMC model induced by high-
glucose PDFs

Improving the disruption of intracel-
lular lipid homeostasis

 [66]

Rosiglitazone PPAR-γ A mouse PF model induced by 
high-glucose PDFs and a primary 
HPMC model induced by TGF-β1

Reducing the accumulation of AGEs 
and inflammation, and preserving the 
mesothelial cells monolayer

 [158]

Valsartan LDLr A PF model of mice and a HPMC 
line induced by high glucose

Decreasing intracellular RAS activ-
ity, improving lipid homeostasis, and 
reducing ECM accumulation

 [40]

AT2 siRNA AT1/LOX-1  A cell (HMrSV5 cell line) model 
induced by high glucose

Blocking LOX-1, reversing ox-LDL 
deposition, and ameliorating ECM 
accumulation

 [76]

GSK343 EZH2/ Klotho A cell (HMrSV2 cell line) model 
induced by high glucose

Reducing lipid deposition, peritoneal 
fibrosis, and EMT

 [39]

FAO C75 CPT1A Mouse PD models induced by 
high-glucose PDFs and cell mod-
els (primary HPMC and Met5A cell 
line) induced by TGF-β1

Restoring FAO, reversing the pro-
fibrotic phenotype in PMCs, and 
reducing PF

 [45]

Mitochondrial 
dysfunction

Metformin AMPK/PGC-1α A mouse PF model induced by 
high-glucose PDFs

Improving mitochondrial morphologi-
cal manifestations, inhibiting apoptosis 
of PMCs, and alleviating PF

 [151]

Table 1 Overview of therapeutic targets and associated mechanisms in metabolic reprogramming for prevention of PF progression
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high-glucose PDFs exacerbates cellular hypoxia and dam-
age, ultimately resulting in PF and ultrafiltration failure.

OXPHOS
Under physiological conditions, glucose undergoes 
aerobic degradation processes, including the TCA 
and OXPHOS, ultimately converting it into H2O and 
CO2. Mitochondrial OXPHOS drives ATP production 
through the respiratory electron transport chain [ 55]. 
However, high-glucose environments inhibit mitochon-
drial OXPHOS, increase glucose consumption, enhance 
glycolysis, and disrupt lipid metabolism, resulting in a 
substantial increase in the cellular NADH/NAD + ratio 
[47]. Similarly, cellular pseudohypoxia induced by high-
glucose PDFs leads to the shutdown of mitochondrial 
OXPHOS. Thus, high-glucose PDFs impair normal 

mitochondrial OXPHOS and induce the metabolic repro-
gramming of PMCs.

Impaired mitochondrial OXPHOS primarily arises 
from high-glucose PDF-induced mitochondrial dysfunc-
tion, leading to PMC injury and PF [24, 56, 57]. High-glu-
cose PDFs causes pathological damage to mitochondria 
of PMC via various mechanisms, including TCA cycle 
enzyme deficiency, mitochondrial DNA damage, mito-
chondrial reactive oxygen species (mtROS) accumulation, 
and mitochondrial membrane damage, thereby inhibit-
ing mitochondrial respiration and OXPHOS [23, 24, 48]. 
Clinical peritoneal samples from patients on continuous 
ambulatory peritoneal dialysis further support this, dem-
onstrating that high-glucose PDFs may promote toxic 
free radical production during mitochondrial metabo-
lism in PMCs, resulting in cumulative mitochondrial 

Fig. 1 Metabolic reprogramming in PMCs during PD. Long-term PD induces metabolic reprogramming as an adaptive response to high-glucose PDFs. 
This involves alterations in glucose metabolism, characterized by enhanced activity of glycolytic, polyol, pentose phosphate pathways, alongside OX-
PHOS inhibition. Subsequently, upregulation of intracellular damage factors and a considerable increase in the NADH/NAD + ratio exacerbate cellular 
pseudohypoxia, injury, and death. Concurrently, lipid metabolism reprogramming occurs due to impaired efflux, leading to lipid deposition and lipotoxic-
ity injury. Impaired FAO affects mitochondrial function and cellular energy metabolism balance. FAO, fatty acid oxidation; OXPHOS, oxidative phosphory-
lation; PD, peritoneal dialysis, PDF, peritoneal dialysis fluid

 

Targeting 
strategies

Drugs/ 
compounds

Targeting protein Animal/cell models Mechanism/Intervention effects Refer-
ences

mitoTEMPO, 
BAY-117,085, and 
resveratrol

mtROS, NF-κB, and 
IL-1β

In vitro models of primary HPMCs 
and mesothelial cell line (Met5A 
cell line)

Allowing the maintenance of a healthy 
mitochondrial population and protect-
ing PMCs from inflammatory injury

 [23]

Astragalus Total 
Saponins (ATS)

PGC-1α/NRF1/TFAM A rat PD model and an incu-
bated HPMC model induced by 
high-glucose PDFs

Promoting mitochondrial synthesis and 
inhibiting apoptosis

 [152]

Astaxanthin (AST) NF-κB An in vitro model of temperature-
sensitive mesothelial cells (TSMCs 
cell line) induced by HG

Attenuating glucose-induced ROS 
from mitochondria, inflammatory 
cytokine production, NF-κB activation, 
and EMT

 [153]

Mitochonic acid-5 
(MA-5)

TGF-β/MCP1 A CG-induced PF model of mice Restoring mitochondrial function, and 
ameliorating chlorhexidine gluconate-
induced PF

 [154]

Table 1 (continued) 
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DNA damage [58, 59]. Moreover, mitochondrial dysfunc-
tion plays a considerable role in PF progression through 
tumor necrosis factor-α-induced cyclooxygenase-2 
expression, prostaglandin E2 production, and activa-
tion of NLRP3 inflammasomes in PD-related PF [23, 60]. 
Mitochondrial dysfunction and impaired OXPHOS rep-
resent the vital causes of high-glucose PDF-induced PMC 
injury, highlighting their critical role as potential targets 
for PF treatment.

Polyol pathway
The polyol glucose metabolic pathway also exerts poten-
tially deleterious effects on the peritoneum during 
long-term PD [61, 62]. The polyol pathway, a high-glu-
cose-driven pathway, involves the reduction of NADPH-
dependent glucose to sorbitol by aldose reductase (AR), 
followed by NAD+-dependent oxidation to fructose by 
sorbitol dehydrogenase [63, 64]. Under physiological 
conditions, most glucose is phosphorylated to glucose-
6-phosphate (G6P) by hexokinase (HK), with a minor 
portion of non-phosphorylated glucose entering the 
polyol pathway, which has been attributed to the lower 
affinity of AR for glucose compared to that of HK [65]. 
However, a substantial increase in glucose concentration 
enhances polyol pathway activation to increase intra-
cellular glucose metabolism [22]. The polyol pathway 
increases the intracellular NADH/NAD + ratio, exacer-
bating cellular hypoxia and enhancing the accumulation 
of intracellular ROS, ultimately leading to high-glucose-
induced oxidative stress [22, 64]. Additionally, the polyol 
pathway induces the intracellular accumulation of poorly 
permeable sorbitol, increasing cell osmolarity and hyper-
tonicity and resulting in cellular edema [65].

Moreover, the enhanced polyol pathway exacerbates 
PMC injury and enhances PF development through vari-
ous downstream molecular mechanisms. In vitro studies 
have demonstrated that exposure to high-glucose PDFs 
leads to the activation of the polyol pathway in PMCs, 
thereby impairing cell function and causing injury via the 
upregulation of TGF-β1 and MCP-1 synthesis [62]. Con-
versely, studies conducted in rats have revealed that inhi-
bition of the polyol pathway using AR activity inhibitors 
attenuates PF and angiogenesis [61]. Overall, abnormal 
activation of the polyol pathway represents a potential 
risk factor for PF in patients undergoing PD.

Lipid metabolism
Recent reports have implicated lipid metabolism in PF 
[39, 66]. Long-term exposure to high-glucose PDFs dis-
rupts normal lipid metabolism in PMCs, with impaired 
fatty acid oxidation (FAO) and abnormal lipid deposi-
tion leading to imbalances in cellular energy metabolism 
[39, 66]. Triglycerides mainly consist of free fatty acids 
(FAs). Notably, FA homeostasis is maintained through 

their synthesis, transport, and metabolism. FA influx is 
mediated by increased expression of CD36, known as 
the scavenger receptor B2 [67]. Enhanced de novo FA 
synthesis is mediated by SREBP-1 C, FASN, and SCD-1 
[68]; and β-oxidation of FAs is mediated by the rate-lim-
iting enzyme carnitine palmitoyltransferase 1 A (CPT1A) 
[69]. Alternatively, cholesterol synthesis is regulated by 
HMGCR, while its efflux is mediated by ABCA1 and 
ABCG1 [70]. Abnormalities in these processes can result 
in the accumulation of intracellular lipids, leading to lipo-
toxic injury [13, 71]. Thus, disruption of lipid homeosta-
sis represents an important mechanism involved in the 
development of high-glucose PDF–induced fibrosis.

High-glucose PDFs may promote PF by dysregulating 
lipid metabolism through various molecular pathways 
[13, 38, 39]. FAO, a major source of ATP and NADPH 
predominantly observed in mitochondria, is impaired in 
PMCs, promoting the progression of PF [45, 72]. None-
theless, restoration of mesothelial FAO in PD animal 
models increases ATP and NADPH production, reverses 
mitochondrial superoxide production, maintains mito-
chondrial homeostasis, and preserves peritoneal struc-
ture during PD [45, 73]. In a peritonitis mouse model, the 
upregulation of FAO during inflammation promoted the 
resolution of inflammation by providing sufficient energy 
[74]. Thus, FAO plays an important functional role in PD-
associated PF and may be a promising therapeutic target. 
High glucose levels induce the abnormal expression of 
angiotensin II type 2 receptor (AT2R), mTOR complex 
1 (mTORC1), and Klotho, interfering with lipid metabo-
lism. This leads to apoptosis, inflammation, and oxidative 
stress, which, in turn, activate the downstream TGF-β1 
signaling pathway and MMT, ultimately leading to fibro-
sis [13, 75]. Moreover, high-glucose stimulation disrupts 
lipid metabolism through the activation of the sterol-
regulatory element-binding protein-2/cleavage-activating 
protein pathway (SCAP/SREBP-2) and increased expres-
sion of HIF-1α, thereby promoting angiogenesis and PF 
[13, 66]. Therefore, restoring normal lipid metabolism 
in PMCs may serve as a novel therapeutic strategy for 
improving peritoneal injury.

Abnormal lipid deposition can cause lipotoxic dam-
age and, thus, serves as an important contributor to 
PD-related fibrosis. High-glucose-induced lipotoxicity 
can directly exacerbate the expression of extracellular 
matrix (ECM) components, leading to the loss of epithe-
lial characteristics in human peritoneal mesothelial cells 
(HPMCs), ultimately resulting in fibrotic changes [76]. In 
vitro and in vivo studies have revealed that Klotho, a key 
gene involved in lipid metabolism, promotes MMT and 
PF induced by high glucose PD [39]. Moreover, the his-
tone lysine methyltransferase, enhancer of zeste homo-
log 2 (EZH2) can directly regulate Klotho expression 
through epigenetic modifications; thus, inhibiting EZH2 
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expression attenuates Klotho-mediated lipid deposition 
and PF [39]. Additionally, in vitro studies revealed that 
inhibition of AT2R promotes lipid disorder-mediated 
ECM deposition by upregulating lectin-like oxidized 
lipoprotein receptor-1 (LOX-1), resulting in intracellu-
lar deposition of lipid droplets in HPMCs [76]. Further-
more, in vitro and in vivo studies have demonstrated that 
high-glucose PDFs reduces ABCA1 expression through 
inhibition of peroxisome proliferator-activated receptor 
γ (PPARγ) activity, impairing lipid efflux and promoting 
lipid deposition [39]. Alternatively, CD36 acts as a meta-
bolic regulator by mediating lipid sensing and transport. 
Notably, high glucose-induced upregulation of CD36 
may lead to metabolic disorders by downregulating the 
PPARγ pathway; however, there are limited studies inves-
tigating these interactions in PD models.

The intricate and close relationship between lipid 
metabolism and mitochondria adversely affects mito-
chondrial function when lipid disorders occur [77, 
78]. Notably, a high-glucose environment induces dys-
regulation of mitochondrial oxidative metabolism and 
increases mtROS generation, impairing mitochondrial 
lipid utilization and promoting lipid accumulation [79]. 
Lipotoxicity induces mitochondrial metabolic stress and 
dysfunction in diabetic mouse models, triggering the 
release of mtDNA and activation of the cGAS-STING 
pathway, ultimately promoting inflammation and apop-
tosis [80]. Disturbances in lipid metabolism may also 
potentially impede mitochondrial dynamics, leading to 
reduced mitochondrial function in PMCs.

Overall, lipid metabolism disorders induced by high-
glucose PDFs contribute to PF progression, involving 
impaired lipid metabolism processes such as FAO, lipid 
efflux, and lipid deposition in PMCs.

Other metabolic alterations
In addition to glucose and lipid metabolism, other meta-
bolic pathways such as amino acid metabolism, ketone 
body (KB) metabolism, and pentose phosphate pathway 
(PPP) play important roles in metabolic reprogramming 
[81–83] However, there has been limited research in the 
field of PD. A thorough investigation into the role of these 
metabolic processes can provide a better understanding 
of the pathophysiological process of PF and offer more 
effective solutions for clinical treatment.

The PPP, branching off from glycolysis, is considered 
the first step in glucose metabolism, serves as a major 
source of NADPH, and is a vital component in cell bio-
synthesis, metabolism, and cellular redox homeostasis 
[84]. Notably, high glucose levels can directly stimulate 
increased cellular glucose uptake, leading to an increase 
in the metabolic substrate G6P, thereby increasing its 
flow into the PPP [85]. Previous studies have confirmed 
that PPP plays a crucial role in combating oxidative stress 

and maintaining metabolic and redox homeostasis by 
reducing NADP to NADPH [86]. Therefore, PPP activ-
ity may rise in response to prolonged exposure to high-
glucose PDFs as a means to regulate oxidative stress. 
However, comprehensive studies investigating PPP in the 
context of PD are limited; therefore, further studies are 
needed to confirm its involvement in PF.

Research into the mechanisms underlying amino acid 
metabolism in PMCs is lacking. A widespread loss of 
peritoneal proteins and amino acids has been observed 
in patients undergoing PD, potentially due to the use of 
high-glucose-based PD strategies [87]. Amino acid-based 
PD techniques appear to better preserve the ultrastruc-
ture, viability, and protein biosynthesis of HPMCs than 
conventional glucose-based PD [88, 89]. Notably, gluta-
mine metabolism plays a potential protective role against 
PF [90, 91]. Glutamine, the most abundant free amino 
acid in the human body, contributes to DNA, RNA, and 
protein synthesis. Moreover, it promotes ATP produc-
tion through OXPHOS [92]. A human clinical trial has 
revealed that glutamine deficiency during PD is associ-
ated with peritoneal pathological mechanisms, including 
impaired stress response and impaired host defense [91]. 
However, the precise mechanism underlying the protec-
tive effects of amino acid metabolism remains unclear 
and requires further investigation.

Recent advancements in our understanding of KB 
metabolism have revealed that KBs serve as alternative 
sources of ATP and regulate protein post-translational 
modifications, modulation of inflammation, and regula-
tion of oxidative stress [93, 94]. Furthermore, KBs serve 
as important regulators of mitochondrial and nuclear 
metabolism and engage in complex competitive interac-
tions with other OXPHOS substrates including glucose 
and FAs [95]. Given the pleiotropic effects of KBs, we 
postulate that KB metabolism may play an important role 
in the metabolic reprogramming of PMCs. However, evi-
dence to support this hypothesis is currently lacking.

Therapeutic targets
The role of high-glucose PDFs in PF development is 
evident; however, effective interventions are still lack-
ing. Nonetheless, glucose-based PDFs remains the most 
widely used type of PD, primarily due to cost limitations, 
challenges in promoting the use of biocompatible PDFs, 
and issues with the clinical translation of existing drugs. 
Metabolic abnormalities in PMCs can induce patho-
logical changes, such as inflammation, oxidative stress, 
lipid deposition, and fibrosis. Thus, early interventions 
targeting glucose metabolism, mitochondrial function, 
and lipid metabolism may prove more efficacious than 
addressing individual downstream events. Various drugs 
and compounds aimed at modulating glycolysis, lipid 
metabolism, and other metabolic processes have shown 
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promise in ameliorating PMC damage and inhibiting PF 
progression (Table 1).

Targeting glucose metabolism
Glucose metabolism plays a crucial role in the patho-
genesis of PF. Recent studies have explored strategies 
to impede PF progression by reducing glucose absorp-
tion, inhibiting glycolysis, and decreasing the NADH/
NAD + ratio. Numerous studies have highlighted the 
potential of targeting glucose metabolism to inhibit PF 
progression, with various metabolism-targeting drugs 
and compounds showing promise in the mitigation of 
peritoneal injury and fibrosis. Nonetheless, further inves-
tigation is needed before using these drugs as novel ther-
apeutic strategies for PF (Fig. 2).

Targeting glucose absorption
Several anti-diabetic agents that reduce peritoneal glu-
cose absorption exert protective effects against PF. The 
expression of glucose transporters in PMCs is influ-
enced by glucose concentration, affecting the peritoneal 

response to inflammation, ECM production, and PF pro-
gression [96, 97]. Inhibitors of GLUT-1 and sodium glu-
cose cotransporter-2 (SGLT-2) are effective inhibitors 
of glucose absorptions. In preclinical studies, GLUT-1 
inhibitors have demonstrated efficacy in targeting gly-
colysis and inhibiting glucose uptake [98]. However, their 
clinical application requires further development of these 
drugs and compounds.

Conversely, SGLT-2 inhibitors, such as empagliflozin, 
dapagliflozin, and canagliflozin, have been widely used in 
clinical practice. SGLT-2 inhibitors hold the potential to 
reduce glucose absorption during PD, thereby attenuat-
ing MMT, fibrosis, and ultrafiltration failure through var-
ious mechanisms, including inhibiting SGLT-2 activity 
[99], alongside Nrf2/HO-1 [100], HIF [52], and TGF-β/
Smad signaling [101]. However, the peritoneal protec-
tive effect of SGLT-2 inhibitors remains debatable. A 
study conducted on a rat model of acute PD determined 
that SGLT-2 inhibitors failed to reduce glucose uptake 
or increase ultrafiltration [102]; conversely, other studies 
using animal models of chronic PD have demonstrated 

Fig. 2 Targeting glucose metabolism in PMCs. Potential therapeutic strategies include targeting inhibiting glucose uptake using SGLT-2, GLUT-1, DPP-4, 
or GLP-1R inhibitors, hyperglycolysis inhibition using 2-DG, curcumin, or specific microRNAs (microRNA-26a and microRNA-200a), polyol pathway inhibi-
tion, and sorbitol clearance using zopolrestat (an AR inhibitor), sorbinil, or sodium pyruvate. 2-DG, 2-deoxyglucose; AR, aldose reductase; PMC, peritoneal 
mesothelial cell; SGLT-2, sodium glucose cotransporter-2; GLUT-1, glucose transporter type 1; DPP-4, Dipeptidyl peptidase-4; GLP-1R, Glucagon-like pep-
tide 1 receptor
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that SGLT-2 inhibitors improve PF and function [17, 
99, 101]. Therefore, further research is needed to clarify 
the peritoneal protective mechanisms of SGLT-2 inhibi-
tors and determine whether these discrepancies in acute 
or chronic peritoneal injury responses are accurate. 
Recent studies have shown that SGLT − 2 inhibitors not 
only affect glucose metabolism but also have a signifi-
cant impact on lipid and other related metabolic path-
ways. They positively influence lipid metabolism through 
multiple mechanisms, including lowering blood lipids, 
improving the ratio of low-density lipoprotein (LDL) par-
ticles, regulating lipid synthesis and transport, promoting 
fatty acid oxidation, and ketone body production [103–
105]. They also enhance mitochondrial function, reduce 
oxidative stress, and increase mitochondrial synthesis 
[106, 107]. Moreover, recent research has reported that 
they can improve glycine metabolism [108]. The findings 
indicate that the effects of SGLT-2 inhibitors on perito-
neal metabolism may extend beyond the scope of glu-
cose metabolism. However, research on their impact in 
patients undergoing PD is still preliminary, necessitating 
further investigation.

In addition to glucose transporter proteins, novel anti-
diabetic medications, such as dipeptidyl peptidase-4 
(DPP-4) inhibitors and glucagon-like peptide-1 (GLP-
1) receptor agonists, may improve the pathophysiol-
ogy of PD-associated fibrosis. DPP-4, a type II integral 
membrane glycoprotein with serine peptidase activity, 
primarily targets the enteric insulin GLP-1 [109]. DPP4 
inhibitors, such as sitagliptin and linagliptin, exhibit 
hypoglycemic effects and demonstrate cytoprotective 
pleiotropic effects, including anti-inflammatory and anti-
fibrotic actions [110, 111]. Previous studies have identi-
fied DPP4 as a substantial factor associated with PF [112]. 
Notably, in vitro and in vivo experiments have revealed 
that DPP4 inhibitors and exendin-4 can mitigate PD dys-
function and exhaustion by suppressing DPP-4 activity, 
the TGF/Smad3 pathway, the NF-κB pathway, and MMT 
[112]. Therefore, approaches targeting DPP-4 are poten-
tial therapeutic strategies for PF.

Targeting the polyol pathway
The polyol pathway plays a deleterious role in the perito-
neum during long-term PD. Studies have indicated that 
the use of polyol pathway inhibitors can help reduce glu-
cose-mediated peritoneal damage and enhance the long-
term survival of PMCs [61, 62]. For example, zopolrestat, 
an AR inhibitor, alters the NADH/NAD + ratio by inhibit-
ing AR activity in the polyol pathway, thereby impeding 
the conversion of glucose to sorbitol. Zopolrestat report-
edly reduces peritoneal angiogenesis and fibrosis in a rat 
model of PF induced by high-glucose dialysate [61]. How-
ever, zopolrestat is not currently available for human use 
owing to its side effects. Nonetheless, other drugs have 

also been found to target the polyol pathway to delay 
PF progression, including sorbinil and sodium pyruvate 
[62]. In vitro studies have demonstrated that sorbinil and 
sodium pyruvate can alleviate PMC damage by inhibiting 
high-glucose–induced intracellular TGF-β1 and MCP-1 
synthesis, as well as by enhancing intracellular sorbitol 
clearance [62].

Pyruvate contributes to improved sorbitol clearance, 
therefore, some studies have investigated methods for 
delaying PF progression based on pyruvate metabo-
lism. Pyruvate dehydrogenase (PDH), a key enzyme that 
couples glycolysis with the Krebs cycle, has emerged as 
an important target for this therapeutic approach, with 
its anti-fibrotic effects being closely linked to its activity 
[113, 114]. Dichloroacetic acid (DCA), a potent inhibi-
tor of PDH kinase, modulates the transfer of pyruvate to 
the Krebs cycle, thereby maintaining PDH activity and 
increasing intracellular energy [114]. Notably, DCA has 
demonstrated high efficacy in inhibiting fibrosis [113, 
115]. Additionally, L-carnitine exerts anti-fibrotic effects 
by maintaining PDH activity through the reduction of 
PDH kinase activity and mitochondrial acetyl-CoA pro-
duction [7, 116]. However, the efficacy of these drugs 
requires further validation.

Targeting glycolysis
Targeting glycolysis has also emerged as a promising 
therapeutic strategy for the treatment of PF. Notably, 
2-deoxyglucose (2-DG), a glucose derivative that inhib-
its glycolysis [117], directly blocks hyperglycolysis by 
inhibiting HK activity, thereby suppressing the TGF-β1–
induced fibrotic cell phenotype and subsequent PF in 
mice [48]. Additionally, curcumin has also been identified 
as a drug that targets glycolysis [118, 119]. Curcumin, a 
diketone derived from plant rhizomes, possesses anti-
inflammatory, antimicrobial, and anticancer proper-
ties [119, 120]. Curcumin reportedly downregulates the 
expression and activity of HK, phosphofructokinase-2, 
glucose transporter type 4 (Glut4), and monocarboxyl-
ate transporter 4 (MCT4) in hepatic stellate cells [121]. 
Moreover, prior studies have confirmed the substantial 
protective effects of curcumin against glucose PD efflu-
ent–induced MMT and PF [122, 123]. These findings 
suggest that curcumin inhibits several steps in the gly-
colytic pathway [121]. Furthermore, certain microR-
NAs found in the peritoneum, such as microRNA-26a 
and microRNA-200a, target hyperglycolysis and fibrotic 
signaling in PMCs [48]. However, the effectiveness and 
safety of these methods require further investigations.

Targeting lipid metabolism
Recent studies have established that lipotoxicity mediates 
the progression of PF [39, 124]. Consequently, target-
ing lipid metabolism has become a key focus of current 
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research. Medications aimed at improving lipid metabo-
lism and identifying novel targets may represent new 
therapeutic strategies to slow the progression of PD-
related fibrosis (Fig. 3).

Targeting lipid deposition
Statins are lipid-lowering drugs that inhibit choles-
terol synthesis by competitively inhibiting 3-hydroxy-
3-methyl-glutaryl CoA (HMG-CoA) reductase, thereby 
blocking the conversion of HMG-CoA to methylglutarate 
[125]. Several statins, including atorvastatin, pitavastatin, 
and simvastatin, exhibit anti-fibrotic effects [126–128]. 
In both in vivo and in vitro PD models, statins inhibit 
MMT via the mevalonate pathway, thereby preserving 
peritoneal integrity and inhibiting PF [124]. Additionally, 
statins may alleviate peritoneal inflammation, fibrosis, 
and angiogenesis by modulating glutathione reductase 
activity and the TGF-β pathway [129]. However, pro-
longed use of statins may increase insulin resistance, dis-
rupt lipid metabolism, and exacerbate inflammation and 
fibrosis [130, 131]. Moreover, simvastatin did not attenu-
ate PF in a rat model of PD [132]. Thus, the anti-fibrotic 
effects of statins remain controversial, and further studies 
are required to determine their potential as therapeutic 
strategies in PD.

Rapamycin, a commonly used immunosuppressant tar-
geting mTOR, has demonstrated anti-fibrotic effects and 
improves peritoneal membrane transport function in PD 
models [133, 134]. Recent studies have revealed its abil-
ity to inhibit intracellular lipid accumulation by blocking 
mTORC1 activity, thereby regulating lipid homeostasis 
and reversing low-density lipoprotein receptor (LDLr) 
dysfunction. Consequently, rapamycin exhibits a clear 
protective effect against lipid disorder-mediated PF [13, 
135]. Furthermore, rapamycin can enhance intracellular 
lipid homeostasis by inhibiting cellular lipid uptake and 
increasing cholesterol efflux, thereby exerting a substan-
tial protective effect against high-glucose PDF-induced 
fibrosis [66]. However, the safety and efficacy of rapamy-
cin remain unclear.

PPARγ, an important nuclear receptor that controls the 
transcription of specific genes, is crucial in the interac-
tion between lipid and glucose metabolism [136, 137]. 
Inhibiting PPARγ activity disrupts intracellular lipid 
efflux, leading to lipid droplet deposition and subse-
quent lipid disorder–mediated peritoneal injury and 
fibrosis [66]. Several studies using animal models of PD 
have revealed that the PPAR-γ agonist, rosiglitazone, 
protects peritoneal integrity and reduces PF by mitigat-
ing the accumulation of AGEs and inflammation [138, 

Fig. 3 Targeting lipid metabolism in PMCs. Potential therapeutic strategies include restoring and enhancing FAO using CPT1A agonists (C75), inhibiting 
lipid synthesis and uptake, and promoting cholesterol efflux using agents, such as rapamycin, rosiglitazone (a PPAR-γ agonist), and RAS blockers. FAO, fatty 
acid oxidation; PMC, peritoneal mesothelial cell; RAS, renin-angiotensin system
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139]. Additionally, PPARγ can inhibit the expression of 
GLUT1, thereby maintaining metabolic homeostasis 
and alleviating high-glucose PDF-induced PF [140, 141]. 
Given its dual role in both glucose and lipid metabolism, 
PPARγ stands out as a potentially ideal target for treating 
high-glucose-induced PF, providing further elucidation 
of its mechanism of action.

Abnormal activation of RAS has been implicated in 
lipid disorder-mediated PF [40, 76]. Specifically, RAS 
activation is crucial in regulating the LDLr pathway [40]. 
In vitro studies have shown that increased intracellu-
lar RAS activity impairs lipid homeostasis by disrupting 
the LDLr pathway and promoting ECM accumulation in 
HPMCs [40]. Moreover, AT2Rs ameliorate lipid distur-
bances and attenuate ECM accumulation in HPMCs by 
suppressing lectin-like oxidized LOX-1 [76]. Therefore, 
RAS blockers may maintain lipid homeostasis and pro-
tect against peritoneal injury.

EZH2 and Klotho also represent potential targets for 
modulating lipid metabolism in the treatment of PF 
[39, 142–144]. Specifically, EZH2 promotes lipid depo-
sition and fibrosis, whereas Klotho is involved in lipid 
metabolism and possesses anti-fibrotic properties [39, 
143, 144]. EZH2 inhibitors, such as GSK343 and 3-dea-
zaneplanocin A, attenuate high-glucose-induced lipid 
deposition, MMT, angiogenesis, and PF [142, 145]. Fur-
thermore, EZH2 inhibition mitigates lipid deposition and 
PF by suppressing EZH2 expression and restoring Klotho 
expression [39]. Klotho protects the peritoneum from PF 
by down-regulating the Wnt/β-catenin signaling pathway 
in a PD mouse model [144].

Targeting FAO restoration
Dysfunctional FAO in mesothelial cells promotes PD-
associated PF; thus, enhancing FAO may be a therapeu-
tic approach for PF [45]. The rate-limiting step in FAO is 
the translocation of long-chain FAs into mitochondria via 
CPT1A [69]. Notably, reduced expression of CPT1A has 
been associated with fibrosis [146, 147]. A recent study 
demonstrated that treatment of PD mice with a CPT1A 
activator (C75) restored FAO, reversed the pro-fibrotic 
phenotype in mesothelial cells, and reduced PF by upreg-
ulating CPT1A expression [45]. Consequently, CPT1A 
has emerged as a promising target for PF treatment. 
Alternatively, adipsin, stilbenes, and resveratrol metabo-
lites are compounds known to enhance mitochondrial 
energy metabolism and increase FAO, potentially serv-
ing as therapeutic agents for PF [148–150]. However, 
further research is needed to validate their efficacy as PF 
treatments.

Targeting mitochondrial dysfunction
Preserving mitochondrial integrity may be a novel ther-
apeutic approach for protecting the peritoneum from 

PD-induced fibrosis [23, 24]. For example, mitoTEMPO 
(an mtROS scavenger), BAY-117,085 (an NF-κB inhibi-
tor), and resveratrol (an anti-inflammatory antioxidant) 
alleviate mitochondria-induced inflammation in meso-
thelial cells by protecting mitochondrial function [23]. 
Moreover, Wu et al. [151] found that proliferator-acti-
vated receptor-γ coactivator (PGC)-1α overexpression 
or metformin treatment can attenuate PF by preserv-
ing mitochondrial morphology and preventing dam-
age to mitochondrial structure through activation of 
the AMPK-PGC-1α pathway. Astragalus total saponins 
(ATS) alleviate PF by promoting mitochondrial synthesis 
and inhibiting PMC apoptosis [152]. Alternatively, astax-
anthin can eliminate glucose-induced mtROS in PMCs 
and inhibit MMT during PD, thereby demonstrating anti-
oxidant and anti-inflammatory activities [153]. Further-
more, mitochonic acid-5 (MA-5) restored mitochondrial 
function, by inhibiting macrophage infiltration and oxi-
dative stress, thus relieving PF in mice [154]. Ultimately, 
these findings suggest that targeting the mitochondria is 
a promising therapeutic approach for PF (Fig. 4).

Discussion
The metabolic reprogramming of PMCs is a crucial event 
in the progression of PD-associated PF. Initially serving 
as an adaptive response to counteract damaging effects 
of high-glucose PDFs, metabolic pattern shifts caused by 
high glucose can lead to metabolic disorders, resulting in 
cellular damage, inflammation, and eventual cell death, 
forming the so-called “honey trap.” Consequently, long-
term exposure to hyperglycemic environments induces 
sustained metabolic reprogramming, trapping PMCs 
in the “honey trap,” impairing the cells’ ability to adapt 
to physiological conditions and ultimately resulting in 
chronic peritoneal inflammation and fibrosis.

Despite increasing understanding, substantial break-
throughs in the prevention and treatment of PF remain 
elusive. Recent studies have highlighted the correlation 
between PMC metabolic reprogramming and PD-related 
fibrosis, offering a novel direction for the treatment of PF. 
Nonetheless, several challenges remain in the develop-
ment of effective therapeutic strategies for PF. A primary 
concern is the predominant focus on PMCs in current 
research, leaving uncertainties regarding potential meta-
bolic alterations in other peritoneal cells types during 
PD, such as fibroblasts, macrophages, endothelial cells, 
T cells, and adipocytes. Therefore, exploring the role 
and mechanisms of metabolic dysfunction in the entire 
peritoneum in future clinical and translational research, 
including investigating the role of metabolic reprogram-
ming in other peritoneal cells during PD treatment, is 
crucial.

Moreover, metabolic reprogramming is a complex pro-
cess that involves multiple metabolic pathways. While 
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existing studies predominantly investigating PF have 
focused on glucose and lipid metabolism, the mecha-
nisms and regulation of other metabolic processes, such 
as amino acid metabolism, ketone body metabolism, and 
the PPP, remain unclear. Clarifying the specific interac-
tions between multiple these metabolic processes also 
require further elucidation. Finally, while interventions 
targeting metabolism have shown promise in animal and 
cellular experiments, clinical translation of these strate-
gies remains limited. Furthermore, some of the existing 
clinical drugs possess potential adverse and off-target 

effects. Therefore, the clinical application of drugs and 
compounds that target metabolism requires further 
investigation and validation to ensure their safety and 
efficacy in PF management.

Conclusions and perspectives
The metabolic pathways discussed in this paper repre-
sent novel endogenous targets closely related to PMC 
homeostasis and PD-associated fibrosis. While previ-
ous research predominantly focused on cellular MMT, 
apoptosis, and death, recent studies have shifted toward 

Fig. 4 Targeting mitochondrial function in PMCs. Strategies include using mitoTEMPO (a mitochondrial ROS scavenger), BAY-117,085 (an NF-κB inhibi-
tor), and resveratrol (the natural anti-inflammatory antioxidant) to protect and reduce mitochondrial damage. Alternatively, ATS promotes mitochondrial 
synthesis, while AST and MA-5 inhibit mitochondrial oxidative stress, protecting mitochondrial function. AST, astaxanthin; ATS, astragalus total saponins
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investigating the metabolic mechanisms of PMCs. 
Notably, the balance between glucose metabolism, lipid 
metabolism, and mitochondrial respiration is increas-
ingly recognized as crucial for cellular energy production 
and homeostasis maintenance [53]. Notably, preclinical 
studies investigating several anti-fibrotic drugs target-
ing metabolic pathways are currently underway [155], 
sparking a growing interest in exploring the restoration 
of metabolic homeostasis in mesothelial cells as a poten-
tial therapeutic approach for PD-associated fibrosis. 
Although recent studies have identified a strong rela-
tionship between PMC metabolism and PF, research on 
metabolic reprogramming in PMCs is still in its early 
stages. In conclusion, ongoing research into metabolic 
reprogramming offers a promising avenue for enhancing 
our understanding of the mechanisms driving PD-related 
fibrosis and may ultimately lead to the development of 
novel therapeutic strategies aimed at treating PF.
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